AIRFPGA: A SOFTWARE DEFINED RADIO PLATFORM BASED ON NETFPGA

Hongyi Zeng, John W. Lockwood, G. Adam Covington

Stanford University
Stanford, CA, USA

email: {hyzeng, jwlockwd, gcoving } @stanford.edu

ABSTRACT

This paper introduces AirFPGA, a scalable, high-speed, re-
mote controlled software defined radio (SDR) platform im-
plemented using a NetFPGA board, a digitizer and a High
Frequency (HF) receiver (integrated into a single device).

The AirFPGA is a system built on the NetFPGA that al-
lows baseband recording and playback of wireless signals,
as well as distributed processing. It captures radio signals,
processes them in reconfigurable hardware, and sends the
data via high speed Gigabit Ethernet to PCs or other NetF-
PGAs for additional computations. This paper describes the
system architecture, data path, testbed implementation and
test results. The paper demonstrates the system’s verifica-
tion using a signal generator. It also describes an application
consisting of monitoring a commercial AM station.

1. INTRODUCTION

Software Defined Radio (SDR), which replaces typical hard-
ware components of a radio system (e.g. mixers, filters,
detectors, etc.) with personal computer software or other
embedded computing devices, has recently attracted much
attention in research and education.

SDRs traditionally combine data acquisition (DAQ) and
signal processing on the same device or in close proximity
(e.g. on the same bus). This limits the scale of DAQ(s) and
strains computing capacity due to space and power avail-
ability. It is therefore desirable that DAQ and processing be
performed separately, with only minimal signal processing
at the acquisition point. This enables locating computing
intensive signal processing resources away from DAQ.

We implemented the AirFPGA on the NetFPGA card.
The AirFPGA uses the NetFPGA to transmit baseband sig-
nals over high-speed Ethernet. Each NetFPGA card has 4
Gigabit Ethernet ports. The NetFPGA is collocated with
DAQ. It is connected to signal processing nodes via UDP/IP
stack.

Alexander Tudor

Agilent Labs
Santa Clara, CA, USA
email: alex_tudor@agilent.com

2. SYSTEM ARCHITECTURE

The AirFPGA enables the construction of a signal process-
ing network distributed platform consisting of NetFPGAs,
PCs and other computing devices. The architecture con-
sists of four parts: receiver and digitizer (A/D converter)
integrated into a single device, the NetFPGA card, the ra-
dio server, and radio clients. This is shown in Figure 1.
The Radio Frequency (RF) signal received by the antenna
is down-converted, digitized to IQ pairs and transferred to
the NetFPGA card. The NetFPGA packetizes the received
data and sends it over Gigabit Ethernet. On the other side
of the network radio clients receive the packets for further
processing.

Radio Clients

Antenna

A/D Converter

NetFPGA |

Fig. 1. AirFPGA System Architecture

2.1. NetFPGA

The NetFPGA card [1, 2] is the core of the AirFPGA sys-
tem. It is a network hardware accelerator that augments the
function of a standard computer. The card has four Gigabit
Ethernet ports, Static RAM (SRAM) and Dynamic RAM
(DRAM). The NetFPGA attaches to the Peripheral Commu-
nication Interconnect (PCI) bus on a PC. A Xilinx Virtex-II
Pro FPGA on the NetFPGA performs all media access con-
trol (MAC) and network layer functions.

2.2. Radio Server

The radio server PC hosts the NetFPGA card. The packeti-
zation and forwarding are all accomplished on the FPGA.

A USB cable connects the radio [3] to the PC in which
the NetFPGA card is installed. The radio server first reads
data from the radio via USB cable, then loads it to NetF-
PGA’s SRAM using the memory access tool provided by
NetFPGA gateware. NetFPGA can then treat the data as
though it was directly acquired from the radio, which is what
we expect to accomplish in the next generation of this sys-
tem. Further details will be given in Section 4.2.

2.3. Radio Client

The radio client is the receiver of packets generated by the
NetFPGA card on the radio server PC. A radio client is a
PC with or without a NetFPGA card. It can also be another
NetFPGA card in a serial signal processing chain, or another
device that has a large amount of Digital Signal Processing
(DSP) resources, such as the ROACH [4].

3. FEATURES

The AirFPGA has the functionality that enables its novel use
as a network distributed signal processing platform.

3.1. Scalability

The NetFPGA card has 4 Gigabit Ethernet ports. Several
clients may participate in the computation needed for signal
processing. Signals buffered by the NetFPGA card can be
sent through Gigabit Ethernet to devices that have process-
ing resources. In this case, which is the system’s current
implementation, NetFPGA is a data transport device. Other
processing topologies of this “DSP Network™ can be envi-
sioned.

3.2. High speed

The AirFPGA’s current design uses a single NetFPGA Gi-
gabit Ethernet port. Up to 190kHz baseband bandwidth can
be captured and streamed by the radio. Even though the on-
board ADC samples 14bits at 66MS/s, the data is decimated
according to the chosen narrow-band demodulation in order
to fit the USB connection’s 400Mb/s speed. Future work
will use all four Gigabit Ethernet ports to enable wide-band
modulations and MIMO.

Xilinx Virtex II Pro is suitable for processing narrow-
band signals; its use for partial processing for wide-band is
the subject of further investigation. For that purpose, Xil-
inx’s DSP IP cores (e.g. numerically controlled oscillators
(NCO), mixers, filters, FIFOs, etc.) will be considered.

3.3. Remote Controlled

AirFPGA separates data acquisition and signal processing.
Radio clients and the radio server are logically and phys-
ically separated. You can listen to an AM radio far away
from your town by deploying a radio server there. With
more bandwidth you can watch HDTV received on your roof
when you are abroad, or you can monitor the electromag-
netic environment in a particular region.

4. IMPLEMENTATION

4.1. Reference Pipeline

The original reference pipeline of NetFPGA, as shown in
Figure 2, is comprised of eight receive queues, eight trans-
mit queues, and the user data path. The receive and trans-
mit queues are divided into two types: MAC and CPU. The
MAC queues are assigned to one of the four interfaces on
the NetFPGA, and there is one CPU queue associated with
each of the MAC queues.

GigE TIIMAC

RX BXG) User Data Path
GigE = g o 1
RX 3| [< 1
> 0 S 1D
. H—{ | |
Gige s3]] o mm
8| |5 ¢ I
- o c
g |§ Im
GigE = 11D
RX ©
[Regist H SRAM ‘
|_uo Interface

DRAM PCI
Interface HOST

Fig. 2. NetFPGA Reference Pipeline

Users add and connect their modules to the User Data
Path. The Input Arbiter and the Output Queues modules
are present in almost all NetFPGA designs. The source
code for these modules are provided in the NetFPGA Ver-
ilog library [5]. The Input Arbiter services the eight input
queues in a round robin fashion to feed a wide (64 bit) packet
pipeline.

The register system allows software to read and write
the contexts of key registers, counters and the contents of
SRAM from the host PC. The architecture allows modules
to be inserted into the pipeline with minimal effort. The reg-
ister interface allows software programs running on the host
system to send data to and receive data from the hardware
modules.

CTRL NetFPGA 64bit Data Path
- Bits 0-7 | Bits 8-15 [Bits 16-23 | Bits 24-31 | Bits 32-39 | Bits 40-47 | Bits 48-55 | Bits 56-63 |
OxFF port_dst 16 \ word_length 16 \ port_src 16 byte_length 16
0x00 mac_dst 48 mac_src_hi 16
0x00 mac_src_lo 32 mac_ethertype 16 ipiﬁézzz:srlj;“g:l; 4 ip-ToS 8
0x00 ip_total_length 16 ip_id 16 ipfgégf‘f;f:ejl ; ip.TTL 8 ip_prot 8
0x00 | ip_header_checksum 16 ip_src 32 ip_dst_hi 16
0x00 ip_dst_lo 16 udp_src 16 udp_dst 16 udp_length 16
0x00 udp_checksum 16 airfpga_reserved 16 airfpga_seq_num 32
0x00 1Q 32 1Q 32
0x00 1Q 32 1Q 32
0x00 . .
0x01 1Q 32 1Q 32

Table 1. Packet Format of AirFPGA

4.2. AirFPGA Data Path

The User Data Path of the AirFPGA is shown in Figure 3.
We remove all of 8 input queues, the input arbiter, and out-
put queue lookup module, since NetFPGA is served as a
transport an data acquisition device in the current architec-
ture.

User Data Path
| T T
| 1 | 1
1 1 1 1 :I]:DMAC
ol 11| 1D TxQ
2 I1g |8
12 I MAC
o o 3 | S| |-fIS
O LS — S L
2 g 181 e MAC
3 g | 8T M
o1 I8 o
IQ 1 1 1 -
I I MAC
robo g 1 107
Lo -
| DSP Simulator |
PCI > Register SRAM
HOST 110 = | Interface

Fig. 3. AirFPGA data path. The envisioned path is shown in
dotted lines, through the radio interface and DSP modules.
The current path is through the DSP simulator that feeds the
packet generator with “DSP results” directly from SRAM.

We are investigating additional NetFPGA functionality
consisting of the radio control interface and possibly a PHY
(physical layer decoder) and a PHY FEC (Forward Error
Correction). The radio output is baseband IQ pairs or real
numbers. Depending on how much processing takes place
on the NetFPGA, IQ pairs, demodulated and decoded sig-

nals, or even MAC bits are packetized according to the packet
format described in Section 4.3, and sent out the Gigabit
Ethernet port(s). Only IQ pairs are now packetized.

The above describes a theoretical data path, still under
investigation. The current AirFPGA implementation uses
an alternative data path to circumvent the radio interface
and DSP modules, while preserving the overall architecture.
The radio server PC loads the radio signals to the NetF-
PGA’s SRAM. The DSP simulator module reads the data
from SRAM and feeds it to the packet generator as “DSP
results”. The remaining part of data path is the same as the
previous path.

Radio clients receive packets using standard UDP/IP net-
work sockets.

4.3. Packet Format

The NetFPGA data width is 64 bits, along with 8 bit con-
trol (CTRL) signals. Table 1 shows the packet format using
for packetizing process. We choose UDP as transport layer
protocol to achieve highest throughput and reduce the com-
plexity of state machine design. Our applications are toler-
ant with potential packet loss with UDP flow. In UDP pay-
load, we reserved first 16 bits for storing information used
by the AirFPGA software, such as central frequency, power,
antenna status, and data width. A 32 bit sequence number
is embedded to maintain the order of packets and discover
packet loss.

The headers from top down are: 10Q module headers
defined in reference design for NetFPGA to route the packet
correctly, IEEE 802.3 ethernet MAC header, IPv4 header,
UDP header, AirFPGA header (reserved bits and sequence
number). The AirFPGA payload consists a serial of 32 bit
1Q data, where 16 bit I (in-phase) is preceded by 16 bit Q
(quadrature).

4.4. Registers

The NetFPGA register interface exposes hardware’s regis-
ters, counters and tables to the software and allows software
to modify them. [6] This is achieved by memory-mapping
the internal hardware registers. The memory-mapped reg-
isters appear as I/O registers to software. The software can
then access the registers using ioctl calls.

The AirFPGA employs 11 main registers to realize run-
time parameters modification and DSP simulator control-
ling. They are listed in Table 2.

Register Name Function
Packet Parameters

AIRFPGA_MAC_SRC_HI High 16 bits:source MAC
AIRFPGA_MAC_SRC_LO Low 32 bits:source MAC
AIRFPGA_MAC_DST_HI High 16 bits:dest. MAC
AIRFPGA_MAC_DST_LO | Low 32 bits:dest. MAC
AIRFPGA_IP_SRC Source IP
AIRFPGA_IP_DST Destination IP
AIRFPGA_UDP_SRC Source UDP port
AIRFPGA_UDP_DST Destination UDP port

DSP Simulator Control
AIRFPGA_SIM_ADDR_LO | Start addr of SRAM
AIRFPGA_SIM_ADDR_HI | End addr of SRAM
AIRFPGA_SIM_ENABLE Enable DSP Simulator

Table 2. Registers for AirFPGA

5. TESTBED AND RESULTS

We have implemented AirFPGA on the NetFPGA board and
built a testbed for verification. The architecture of the testbed
is shown in Figure 5.

Slgnal Generato] [SDR-1Q)[Radio Server)

@/ﬁ

Antenna

NetFPGA

‘ Glgablt Ethernet

Rad|o Client

Fig. 5. AirFPGA Testbed

The AirFPGA testbed receives signals from an antenna

or a signal generator. The receiver, an HF (30MHz) di-
rect digital down-converter, can continuously stream up to
190kHz of spectrum. The product, called SDR-IQ, is man-
ufactured by RFSpace Inc. The signal generator outputs an
AM modulated RF signal. An antenna can also feed the
SDR-IQ. The SDR-IQ down-converts the RF signal, digi-
tizes it and converts it to IQ pairs. The samples are then sent
to the radio server via USB. The radio server loads the 1Q
pairs to the NetFPGA’s SRAM via the PCI interface. NetF-
PGA packetizes and sends them over the Gigabit Ethernet.

5.1. SDR-IQ

SDR-IQ [3] (Figure 6) converts the RF signal into IQ pairs.
It features a 14 bits analog to digital converter. The de-
vice is supported by several platforms, for either Windows
or Linux, as a front end for spectrum analysis and dozens
narrowband modulations, both analog and digital.

Fig. 6. SDR-IQ

The hardware directly converts 30MHz to IQ pairs using
a direct digital converter (DDC) chip from Analog Devices
(AD6620) running at 66.6MHz.

The SDR-IQ comes with an HF amplified front-end with
switched attenuators, switched filters and 1Hz tuning.

5.2. Linrad

The testbed has two Linrad’s [7] running on the server and
client side. Linrad is a software spectrum analyzer and de-
modulator running under Linux (as well as Microsoft Win-
dows). For signal integrity verification we compare the dis-
played spectrum between two Linrad(s) as shown in Section
5.3.

Linrad operates with any sound card when audible mod-
ulations are used. Linrad supports the SDR-IQ and other
hardware platforms.

The Linrad DSP software is independent of the hard-
ware. It can process any bandwidth produced by the hard-
ware subject to the computing resources of the PC on which
Linrad is running. Linrad has a general purpose architecture
and can be seen as a receiver design kit.

I ICA680 ELLLLL] EFLLLL] =] Gl EELLLL ELLLLL] EELLLL] £
@81.52. 36
81.47. 15
@1.58.33
@1.44. 29
a1.48. 38
195 8. a8 145 7d. 80|
__ 79 75
+ 3]
o i
e I R B
T e JEILTERS W i)
Gl EELLLL E) ERLLLL EIG]
P Gl 3 ELLLLL ERLLLL] &
49.43 1 [:]
3. 18 1
49.42
53,17 1. 89
[§ 78,88 . 78, 88
[Se[AGC A= RA| 1468, 8885 K] 56 AGC| A2 R 19688, 8362 K]
g X T 18| | T 18|
_ e % 1] il
84.)
L) R EEHEH! | IV,
[f][¥] [TReserved for blanker [ol|o]8e. 38 |(1[1§ 1 @34_39
[TReserved for blanker [o]|[o] 80. 38

1.488 [1

Fig. 4. 10kHz single tone AM at carrier frequency 1.4MHz. 3 main spectrum are shown on the waterfall: carrier at 1.4MHz,
sidebands at 1.39MHz and 1.41MHz. The spectrum are shown on Linrad 1 (left) and Linrad 2 (right).

5.3. Signal Generator + SDR-IQ + AirFPGA

In the first scenario, we connect an Agilent E8267D PSG
Vector Signal Generator to the SDR-IQ. It generates analog
(AM, FM) and digital (ASK, FSK, MSK, PSK, QAM) mod-
ulated signals.

Figure 4 shows how a single tone AM signal looks like
on Linrad’s running at the radio server (left) and the radio
client (right). The upper half of Linrad is the wideband
waterfall and spectrum. The carrier is at 1.4MHz and two
modulating sidebands are on 1.39MHz and 1.41MHz re-
spectively. The baseband waterfall and spectrum is on the
lower part.

Figure 7 shows how an FM signal looks like on client
side Linrad. It is a 1kHz single tone signal at carrier fre-
quency 1.4MHz. We can see several spectrum spaced by
1kHz with magnitude of n-order modified Bessel function
evaluated at § = 10.

5.4. Antenna + SDR-IQ + AirFPGA

In this scenario an AM antenna is connected to the SDR-I1Q.
Due to the limitation of SDR-IQ (30MHz), we are only able
to receive commercial AM stations (520kHz-1,610kHz).
The AM antenna is a thin wire plugged into the RF input
jack of the SDR-IQ.
Figure 8 shows the spectrum of a local AM station (KLIV
1590kHz) in Bay Area. Linrad is able to demodulate the re-

ceived AM signal and send the waveform to the sound card.
We can listen to this station either at the server side or the
client side.

A demonstration video is available online[8].

6. DEVICE UTILIZATION

Table 3 describes the device utilization of AirFPGA. AirF-
PGA uses 38% of the available slices on the Xilinx Virtex
II Pro 50 FPGA. The largest use of the slices are from the
packet generator that packetizes DSP results into IP packets.
19% of the block RAMs available are used. The main use of
block RAMs occurs in the FIFOs used between the modules
and the main input and output queues of the system.

[+ EEELLL ABABAE AZ680808]
82, 17. 15
B2.15. 12
B2.13.89
145 | 78,88
75
-
&8
ki R BB N f 2o e 5]
Gl ERLLLL] ELLLLL ERLLLL] &
a
18.4 | @
18.4
1.6d .
5 [Z8.68
t8] AGC| AZ] R4 4688, 8362]
‘ | P4
.- il —
,,,,, e wol wor I L
VVVVVVVVVVVVVVVVV 87.83
A 1|=3E:53
[TReserved for blanker [@)|[0] ?6. 56

Fig. 7. 1kHz single tone (3 = 10) Wideband FM signal
at carrier frequency 1.4 MHz shown on client side Linrad.
Several spectrum spaced by 1kHz.

7. RELATED WORK

The AirFPGA is not the first system designed for SDR. There
are a number of popular platforms for the amateur radio

Linrad-03.01a

(=il 560000 570p00 560000

590000

60000 610000 620000 [][+]
T]

1 | I

e | ol

@.25
20.00

600060
ichber s =

[1][3] [TIReserved for blanker

2.61%

Fig. 8. KLIV (1590kHz) spectrum on AirFPGA

XC2VP50 Utilization

Resources Utilization Percentage
Slices 9,210 out of 23,616 38%
4-input LUTS | 10,204 out of 47,232 23%
Flip Flops 9,148 out of 47,232 19%
Block RAMs 46 out of 232 19%
External IOBs 356 out of 692 51%

Table 3. Device utilization for AirFPGA

community, such as SDR1000 from FlexRadio Systems [9],
Softrock40 from American QRP [10]. These commercial
platforms have no open source design, thus are difficult to
modify by users.

The HPSDR [11] is an open source hardware and soft-
ware SDR project for use by Radio Amateurs ("hams”) and
Short Wave Listeners (SWLs). It is being designed and de-
veloped by a group of SDR enthusiasts with representation
from interested experimenters worldwide. The discussion
list membership currently stands at around 750 and includes
such SDR enthusiasts. However, HPSDR is designed for
radio-amateur analog and digital communications.

GNU Radio [12] is a free software development toolkit
that provides the signal processing runtime and processing
blocks to implement software radios using readily-available,

low-cost external RF hardware and commodity processors.
It is widely used in hobbyist, academic and commercial en-
vironments to support wireless communications research as
well as to implement real-world radio systems.

Rice University’s WARP [13, 14, 15] is a scalable, ex-
tensible and programmable wireless platform to prototype
wireless networks. The open-access WARP repository al-
lows exchange and sharing of new physical and network
layer architectures, building a true community platform. Xil-
inx FPGAs are used to enable programmability of both phys-
ical and network layer protocols on a single platform, which
is both deployable and observable at all layers.

These two systems are designed for future digital wire-
less research, and popular in the academic world. GNU Ra-
dio and WARP both rely on centralized digital signal pro-
cessing in one chip, thus lacking scalability.

Some platforms, although not designed for SDR, pro-
vide superior computing ability that can be used in SDR pro-
cessing. UC Berkeley’s BEE2 and ROACH are two exam-
ples. These boards can serve as radio clients in the AirFPGA
architecture.

The BEE2 board [16] was originally designed for high-
end reconfigurable computing applications such as ASIC de-
sign. It has 500 Gops/sec of computational power provided
by 5 Xilinx XC2VP70 Virtex-II Pro FPGAs. Each FPGA

connects to 4GB of DDR2-SDRAM, and all FPGAs share a
100Mbps Ethernet port.

The ROACH board [4] is intended as a replacement for
BEE2 boards. A single Xilinx Virtex-5 XC5VSX95T FPGA
provides 400 Gops/sec of processing power and is connected
to a separate PowerPC 440EPx processor with a 1 Giga-
bit Ethernet connection. The board contains 4GB of DDR2
DRAM and two 36Mbit QDR SRAMs.

8. FUTURE WORK

8.1. Multicast

The current implementation supports multicast IP address [17].

The destination IP address can be specified as a 224.x.y.z
multicast IP address. Another solution is to implement 4
unicast UDP connection at the same time. The NetFPGA
card has 4 Gigabit Ethernet ports. The additional ports could
allow packets to be delivered to more than one port if there
are multiple recipients of the data, each at a unique desti-
nation IP address. Four copies of each packet can be sent.
They are different only in the destination IP address and the
corresponding next-hop MAC address. The MAC address
can be determined by ARP protocol, which has been imple-
mented in the NetFPGA reference router.

8.2. Radio Daughterboard

We are developing a radio daughterboard and interface mod-
ule that connects the radio directly to the NetFPGA. The
daughterboard is the physical interface between the radio
(consisting of RF front-end and analog to digital converter)
and NetFPGA. Data is transmitted from the radio to the
NetFPGA card through the daughterboard, and NetFPGA
controls the radio through the same interface. The NetFPGA
card provides several General Purpose Input-Output (GPIO)
pins, which are suitable for interfacing with the daughter-
board.

8.3. DSP Modules

We have not yet implemented any DSP modules on the NetF-
PGA. For the next stage we are investigating partial PHY
processing of wide-band signals on the NetFPGA in order
to reduce the transmitted data rate.

9. CONCLUSION

The AirFPGA is a network based SDR platform that per-
forms distributed signal processing over high speed Ether-
net. It is a novel server-client architecture designed for com-
plex digital signal processing in wireless communication.
The radio on the server side can be remotely controlled and
the data it captures can be sent through Gigabit Ethernet to

remote machines. The prototype of AirFPGA has been im-
plemented on NetFPGA along with SDR-IQ and Linrad for
capturing and displaying of analog modulations. Future ver-
sions of AirFPGA will include multicast, a radio daughter-
board, and local digital signal processing, etc. Further infor-
mation and demonstration on the AirFPGA can be found on
AirFPGA’s website. [8]

10. REFERENCES

[1] G. Gibb, J. W. Lockwood, J. Naous, P. Hartke, and N. McKe-
own, “NetFPGA: an open platform for teaching how to build
gigabit-rate network switches and routers,” /IEEE Transac-
tions on Education, vol. 51, no. 3, pp. 364-369, Aug. 2008.

[2] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb,
P. Hartke, J. Naous, R. Raghuraman, and J. Luo, “NetFPGA—
an open platform for gigabit-rate network switching and rout-
ing,” in Microelectronic Systems Education, 2007. MSE ’07.
IEEE International Conference on, San Diego, CA, June
2007, pp. 160-161.

[3] Rfspace Inc., “SDR-IQ Receiver,”
http://www.rfspace.com/SDR-1Q.html.

[4] ROACH Group, “ROACH Homepage,”
http://casper.berkeley.edu/.

[5] NetFPGA Team, “NetFPGA website,” http://netfpga.org/.

[6] G. A. Covington, G. Gibb, J. Naous, J. Lockwood, and
N. McKeown, “Methodology to contribute NetFPGA mod-
ules,” in International Conference on Microelectronic Sys-
tems Education (submitted to), 2009.

[7] Leif Asbrink, SM5BSZ, “Linrad Website,”
http://www.sm5bsz.com/linuxdsp/linrad.htm.

[8] AirFPGA Group, “AirFPGA Homepage,”
http://www.netfpga.org/airfpga.

[9] FlexRadio Systems, “FlexRadio Website,”
http://www.flex-radio.com/.

[10] “SoftRock-40,” http://www.amqrp.org/kits/softrock40/.

[11] HPSDR, “High Performance Software Defined Radio,”
http://hpsdr.org/.

[12] GNU Radio Group, “GNU Radio Website,”
http://www.gnu.org/software/gnuradio/.

[13] WARP Group, “WARP Website,”
http://warp.rice.edu.

[14] P. Murphy, A. Sabharwal, and B. Aazhang, “Design
of WARP: a wireless open-access research platform,” in
EURASIP XIV European Signal Processing Conference,
September 2006.

[15] K. Amiri, Y. Sun, P. Murphy, C. Hunter, J. R. Cavallaro, and
A. Sabharwal, “WARP, a unified wireless network testbed for
education and research,” in Microelectronic Systems Educa-
tion, 2007. MSE °07. IEEE International Conference on, San
Diego, CA, June 2007, pp. 53-54.

[16] C. Chang, J. Wawrzynek, and R. W. Brodersen, “BEE2: a
high-end reconfigurable computing system,” IEEE Design &
Test of Computers, vol. 22, no. 2, pp. 114-125, Mar./Apr.
2005.

[17] S. Deering, “Host extensions for IP multicasting,” Internet
Engineering Task Force, RFC 1112, Aug. 1989. [Online].
Available: http://www.rfc-editor.org/rfc/rfc1112.txt

