
Automatic Test Packet Generation

Hongyi Zeng†‡,Peyman Kazemian†‡, George Varghese∗, Nick McKeown†
† {hyzeng,kazemian,nickm}@stanford.edu, Stanford University, Stanford, CA, USA

∗ varghese@cs.ucsd.edu, UCSD, La Jolla and Microsoft Research, Mountain View, CA, USA
‡ These authors contributed equally to this work

ABSTRACT
Networks are getting larger and more complex; yet adminis-
trators rely on rudimentary tools such as ping and tracer-

oute to debug problems. We propose an automated and sys-
tematic approach for testing and debugging networks called
“Automatic Test Packet Generation” (ATPG). ATPG reads
router configurations and generates a device-independent
model. The model is used to generate a minimum set of
test packets to (minimally) exercise every link in the net-
work or (maximally) exercise every rule in the network. Test
packets are sent periodically and detected failures trigger a
separate mechanism to localize the fault. ATPG can de-
tect both functional (e.g., incorrect firewall rule) and per-
formance problems (e.g., congested queue). ATPG comple-
ments but goes beyond earlier work in static checking (which
cannot detect liveness or performance faults) or fault local-
ization (which only localize faults given liveness results).

We describe our prototype ATPG implementation and
results on two real-world data sets: Stanford University’s
backbone network and Internet2. We find that a small
number of test packets suffices to test all rules in these net-
works: For example 4000 packets can cover all rules in Stan-
ford backbone network while 54 is enough to cover all links.
Sending 4000 test packets 10 times per second consumes lesss
than 1% of link capacity. ATPG code and the data sets are
publicly available1 [1].

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operation—Network monitoring ; D.2.5 [Software Engi-
neering]: Testing and Debugging—Testing tools

General Terms
Algorithm, Reliability

1Each figure/table in Section 7 (electronic version) is click-
able, linking to instructions on reproducing results.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Co-NEXT’12, December 10-13, 2012, Nice, France.
Copyright 2012 ACM 978-1-4503-1775-7/12/12 ...$15.00.

Keywords
Test Packet Generation, Data Plane Analysis, Network Trou-
bleshooting

1. INTRODUCTION

“Only strong trees stand the test of a storm.” —
Chinese idiom

It is notoriously hard to debug networks. Every day net-
work engineers wrestle with router misconfigurations, fiber
cuts, faulty interfaces, mis-labeled cables, software bugs,
intermittent links and a myriad other reasons that cause
networks to misbehave, or fail completely. Network engi-
neers hunt down bugs using the most rudimentary tools (e.g.
ping, traceroute, SNMP, and tcpdump), and track down
root causes using a combination of accrued wisdom and in-
tuition. Debugging networks is only becoming harder as
networks are getting bigger (modern data centers may con-
tain 10,000 switches, a campus network may serve 50,000
users, a 100Gb/s long haul link may carry 100,000 flows),
and are getting more complicated (with over 6,000 RFCs,
router software is based on millions of lines of source code,
and network chips often contain billions of gates). Small
wonder that network engineers have been labeled “masters
of complexity” [28]. Consider two examples:

Example 1. Suppose a router with a faulty line card
starts dropping packets silently. Alice, who administers 100
routers, receives a ticket from several frustrated users com-
plaining about connectivity. First, Alice examines each router
to see if the configuration was changed recently, and con-
cludes that the configuration was untouched. Next, Alice
uses her knowledge of the topology to triangulate the faulty
device with ping and traceroute. Finally, she calls a col-
league to replace the line card.

Example 2. Suppose that video traffic is mapped to a
specific queue in a router, but packets are dropped because
the token bucket rate is too low. It is not at all clear how
Alice can track down such a performance fault using ping

and traceroute.
Troubleshooting a network is difficult for three reasons.

First, the forwarding state is distributed across multiple
routers and firewalls and is defined by their forwarding ta-
bles, filter rules and other configuration parameters. Second,
the forwarding state is hard to observe, because it typically
requires manually logging into every box in the network.
Third, there are many different programs, protocols and hu-
mans updating the forwarding state simultaneously. When

Policy
“Group X can

talk to Group Y”

Control Plane

Data plane

A

B

C

Topology
Forwarding

Table L

Figure 1: Static versus Dynamic Checking: A policy is
compiled to forwarding state, which is then executed by
the forwarding plane. Static checking (e.g. [12]) confirms
that A = B. Dynamic checking (e.g. ATPG in this paper)
confirms that the topology is meeting liveness properties
(L) and that B = C.

Alice uses ping and traceroute, she is using a crude lens
to examine the current forwarding state for clues to track
down the failure.

Figure 1 is a simplified view of network state. At the bot-
tom of the figure is the forwarding state used to forward each
packet, consisting of the L2 and L3 forwarding information
base (FIB), access control lists, etc. The forwarding state is
written by the control plane (that can be local or remote as
in the SDN model [28]), and should correctly implement the
network administrator’s policy. Examples of the policy in-
clude: “Security group X is isolated from security Group Y”,
“Use OSPF for routing”, and “Video traffic should receive at
least 1Mb/s”.

We can think of the controller compiling the policy (A)
into device-specific configuration files (B), which in turn de-
termine the forwarding behavior of each packet (C). To en-
sure the network behaves as designed, all three steps should
remain consistent at all times, i.e. A = B = C. In addi-
tion, the topology, shown to the bottom right in the figure,
should also satisfy a set of liveness properties L. Minimally,
L requires that sufficient links and nodes are working; if
the control plane specifies that a laptop can access a server,
the desired outcome can fail if links fail. L can also specify
performance guarantees that detect flaky links.

Recently, researchers have proposed tools to check that
A = B, enforcing consistency between policy and the con-
figuration [3, 12, 21, 27]. While these approaches can find
(or prevent) software logic errors in the control plane, they
are not designed to identify liveness failures caused by failed
links and routers, bugs caused by faulty router hardware or
software, or performance problems caused by say network
congestion. Such failures require checking for L and whether
B = C. Alice’s first problem was with L (link not working)
and her second problem was with B = C (low level token
bucket state not reflecting policy for video bandwidth).

In fact, we learned from a survey of 61 network operators
(see Table 1 in Section 2) that the two most common causes
of network failure are hardware failures and software bugs,
and that problems manifest themselves both as reachability
failures and throughput/latency degradation. Our goal is to
automatically detect these types of failures.

The main contribution of this paper is what we call an
Automatic Test Packet Generation (ATPG) framework that
automatically generates a minimal set of packets to test the
liveness of the underlying topology and the congruence be-

tween data plane state and configuration specifications. The
tool can also automatically generate packets to test perfor-
mance assertions such as packet latencies. In Example 1 in-
stead of Alice manually deciding which ping packets to send,
the tool does so periodically on her behalf. In Example 2,
the tool determines that it must send packets with certain
headers to “exercise” the video queue, and then determines
that these packets are being dropped.

ATPG detects and diagnoses errors by independently and
exhaustively testing all forwarding entries, firewall rules, and
any packet processing rules in the network. In ATPG, test
packets are generated algorithmically from the device config-
uration files and FIBs, with the minimum number of packets
required for complete coverage. Test packets are fed into the
network so that every rule is exercised directly from the data
plane. Since ATPG treats links just like normal forwarding
rules, its full coverage guarantees testing of every link in the
network. It can also be specialized to generate a minimal set
of packets that merely test every link for network liveness.
At least in this basic form, we feel that ATPG or some simi-
lar technique is fundamental to networks: Instead of reacting
to failures, many network operators such as Internet2 [10]
proactively check the health of their network using pings be-
tween all pairs of sources. However all-pairs ping does not
guarantee testing of all links and it will be non-optimal and
unscalable for large networks such as PlanetLab [26].

Organizations can customize ATPG to meet their needs;
for example, they can choose to merely check for network
liveness (link cover) or check every rule (rule cover) to ensure
security policy. ATPG can be customized to check only for
reachability or for performance as well. ATPG can adapt to
constraints such as requiring test packets from only a few
places in the network, or using special routers to generate
test packets from every port. ATPG can also be tuned to
allocate more test packets to exercise more critical rules.
For example, a healthcare network may dedicate more test
packets to Firewall rules to ensure HIPPA compliance.

We tested our method on two real world data sets - the
backbone networks of Stanford University and Internet2,
representing an enterprise network and a nationwide ISP.
The results are encouraging: thanks to the structure of real
world rulesets, the number of test packets needed is surpris-
ingly small. For the Stanford network with over 757,000
rules and more than 100 VLANs, we only need 4,000 pack-
ets to exercise all forwarding rules and ACLs. On Internet2,
35,000 packets suffice to exercise all IPv4 forwarding rules.
Put another way, we can check every rule in every router on
the Stanford backbone ten times every second, by sending
test packets that consume less than 1% of network band-
width. The link cover for Stanford is even smaller, around
50 packets which allows proactive liveness testing every msec
using 1% of network bandwidth.

The main contributions of our work are: (1) A survey of
network operators revealing common network failures and
their root cause (Section 2), (2) the test packet generation
algorithm (Section 4.1), (3) A fault localization algorithm to
analyze results and isolate the faulty device and rule (Sec-
tion 4.2), (4) use cases of ATPG framework for functional
and performance testing (Section 5), (5) Evaluation of a
prototype ATPG system using rulesets collected from the
Stanford University and Internet2 backbones (Section 6 and
Section 7).

Category Avg % of ≥ 4
Reachability Failure 3.67 56.90%
Throughput/Latency 3.39 52.54%
Intermittent Connectivity 3.38 53.45%
Router CPU High Utilization 2.87 31.67%
Congestion 2.65 28.07%
Security Policy Violation 2.33 17.54%
Forwarding Loop 1.89 10.71%
Broadcast/Multicast Storm 1.83 9.62%

(a) Symptoms of network failure.
Category Avg % of ≥ 4
Switch/Router Software Bug 3.12 40.35%
Hardware Failure 3.07 41.07%
External 3.06 42.37%
Attack 2.67 29.82%
ACL Misconfig. 2.44 20.00%
Software Upgrade 2.35 18.52%
Protocol Misconfiguration 2.29 23.64%
Unknown 2.25 17.65%
Host Network Stack Bug 1.98 16.00%
QoS/TE Misconfig. 1.70 7.41%

(b) Causes of network failure.

Table 1: Ranking of symptoms and causes reported by
administrators (5=most often, 1=least often). The right
column shows the percentage who reported ≥ 4.

<10
20.0%

10-50
35.0%

50-100
10.0%

>100
35.0%

(a)

<5min
3.5%

5-30min
40.4% 30min - 1h

31.6%

1-5h
22.8%

>5h
1.8%

(b)

Figure 2: Reported number of network related tickets
generated per month (a) and time to resolve a ticket
(b).

2. CURRENT PRACTICE
To understand the problems network engineers encounter,

and how they currently troubleshoot them, we invited sub-
scribers to the NANOG2 mailing list to complete a survey
in May-June 2012. Of the 61 who responded, 12 administer
small networks (<1k hosts), 23 medium networks (1k-10k
hosts), 11 large networks (10k-100k hosts) and 12 very large
networks (>100k hosts). All responses (anonymized) are re-
ported in [29], and are summarized in Table 1. The most
relevant findings are:

Symptoms: Of the six most common symptoms, four
cannot be detected by static checks of the type A = B
(throughput/latency, intermittent connectivity, router CPU
utilization, congestion) and require ATPG-like dynamic test-
ing. Even the remaining two failures (reachability failure
and security Policy Violation) may require dynamic testing
to detect forwarding plane failures.

Causes: The two most common symptoms (switch and
router software bugs and hardware failure) are best found
by dynamic testing.

Cost of troubleshooting: Two metrics capture the cost
of network debugging - the number of network-related tickets

2North American Network Operators’ Group.

Category Avg % of ≥ 4
ping 4.50 86.67%
traceroute 4.18 80.00%
SNMP 3.83 60.10%
Configuration Version Control 2.96 37.50%
netperf/iperf 2.35 17.31%
sFlow/NetFlow 2.60 26.92%

Table 2: Tools used by network administrators (5=most
often, 1=least often).

per month and the average time consumed to resolve a ticket
(Figure 2). 35% of networks generate more than 100 tickets
per month. 40.4% of respondents estimate it takes under 30
minutes to resolve a ticket. But 24.6% report that it takes
over an hour on average.

Tools: Table 2 shows that ping, traceroute and SNMP
are by far the most popular tools. When asked what the
ideal tool for network debugging would be, 70.7% reported
a desire for automatic test generation to check performance
and correctness. Some added a desire for “long running tests
to detect jitter or intermittent issues”, “real-time link capac-
ity monitoring”, and “monitoring tools for network state”.

In summary, while our survey is small, it supports the hy-
pothesis that network administrators face complicated symp-
toms and causes; the cost of debugging is nontrivial, due to
the frequency of problems and the time to solve these prob-
lems; classical tools such as ping and traceroute are still
heavily used, but administrators desire more sophisticated
tools.

3. NETWORK MODEL
ATPG uses the header space framework — a geometric

model of how packets are processed we described in [12]
(and used in [27]). In header space, protocol-specific mean-
ings associated with headers are ignored: a header is viewed
as a flat sequence of ones and zeros. A header is a point
(and a flow is a region) in the {0, 1}L space, where L is
an upper bound on header length. By using the header
space framework, we obtain a unified, vendor-independent
and protocol-agnostic model of the network3 that simplifies
the packet generation process significantly.

3.1 Definitions
The definitions in this network model are summarized in

Figure 3.
Packets: A packet is defined by a (port, header) tuple,

where the port denotes a packet’s position in the network
at any time instant (each physical port in the network is
assigned a unique number).

Switch: A switch transfer function, T , models a network
device, such as a switch or router. Each network device
contains a set of forwarding rules (e.g., the forwarding ta-
ble) that determine how packets are processed. An arriv-
ing packet is associated with exactly one rule by matching
it against each rule in descending order of priority, and is
dropped if none match.

Rules: A rule generates a list of one or more output
packets, corresponding to the output port(s) the packet is
sent to; and defines how packet fields are modified. The rule

3We have written vendor and protocol-specific parsers to
translate configuration files into header space representa-
tions.

Bit b = 0|1|x
Header h = [b0, b1, . . . , bL]
Port p = 1|2| . . . |N |drop
Packet pk = (p, h)
Rule r : pk → pk or [pk]
Match r.matchset : [pk]
Transfer Function T : pk → pk or [pk]
Topo Function Γ : (psrc, h)→ (pdst, h)

function Ti(pk)
#Iterate according to priority in switch i
for r ∈ ruleseti do

if pk ∈ r.matchset then
pk.history ← pk.history

⋃
{r}

return r(pk)

return [(drop, pk.h)]

Figure 3: The network model - basic types (left) and the switch transfer function (right)
.

abstraction models all real-world rules we know including
IP forwarding (modify port, checksum and TTL, but not IP
address); VLAN tagging (adds VLAN IDs into the header);
and ACLs (block a header, or map to a queue). Essentially,
a rule defines how a region of header space at the ingress
(the set of packets matching the rule) is transformed into
regions of header space at the egress [12].

Rule History: At any point, each packet has a rule his-
tory: an ordered list of rules [r0, r1, . . .] the packet matched
so far as it traversed the network. Rule histories are fun-
damental to ATPG, as they provide the basic raw material
from which ATPG constructs tests.

Topology: The topology transfer function, Γ, models the
network topology by specifying which pairs of ports (psrc, pdst)
are connected by links. Links are rules that forward packets
from psrc to pdst without modification. If no topology rules
matches an input port, the port is an edge port, and the
packet has reached its destination.

3.2 Life of a packet
The life of a packet can be viewed as applying the switch

and topology transfer functions repeatedly (Figure 4). When
a packet pk arrives at a network port p, the switch function
T that contains the input port pk.p is applied to pk, produc-
ing a list of new packets [pk1, pk2, . . .]. If the packet reaches
its destination, it is recorded. Otherwise, the topology func-
tion Γ is used to invoke the switch function containing the
new port. The process repeats until packets reach their des-
tinations (or are dropped).

function network(packets, switches,Γ)
for pk0 ∈ packets do

T ←find switch(pk0.p, switches)
for pk1 ∈ T (pk0) do

if pk1.p ∈ EdgePorts then
#Reached edge
record(pk1)

else
#Find next hop
network(Γ(pk1), switches,Γ)

Figure 4: Life of a packet: repeating T and Γ until the
packet reaches its destination or is dropped

.

4. ATPG SYSTEM
Based on the network model, ATPG systematically gen-

erates the minimal number of test packets based on network
state, so that every forwarding rule in the network is exer-
cised and covered by at least one test packet. When an error
is detected, ATPG uses a fault localization algorithm to find
the failing rules or links.

Parser

Topology, FIBs, ACLs, etc

Transfer
Function

All-‐pairs	
Reachability

H
ea

de
r S

pa
ce

 A
na

ly
si

s

Test Pkt
DB

Header	 In	 Port	 Out	 Port	 Rules	

10xx…	 1	 2	 R1,R5,R20	

…	 …	 …	 …	

All-pairs Reachability Table
Test	 Packet	 Generator	
(sampling	 +	 Min-‐Set-‐Cover)	 	

Te
sts

/E
xp

ec
t R

es
ult

s

Fault	
LocalizaOon

Ad
di

tio
na

l T
es

ts
/R

es
ul

ts

Test
Terminal

(1)

(2)

(3)

(4)

(5)

Figure 5: ATPG system block diagram.

Figure 5 shows the block diagram of ATPG system. The
system first collects all the forwarding states from the net-
work (step 1). This usually involves reading the FIBs, ACLs
or config files and obtaining the topology. ATPG uses Header
Space Analysis [12] to find reachability between all the test
terminals (step 2). The result is then used by the test packet
selection algorithm to find a minimal set of test packets nec-
essary for complete testing of all the rules in the network
(step 3). These packets will be sent periodically in the net-
work by the test terminals (step 4). Once an error is de-
tected, the fault localization algorithm is invoked to narrow
down the cause of the error (step 5).

4.1 Test Packet Generation

4.1.1 Algorithm
We assume a set of test terminals in the network can send

and receive test packets. Our goal is to generate a set of
test packets to exercise every rule in every switch function,
so that any fault will be observed by at least one test packet.
This is analogous to software test suites that try to test every
possible branch in the program. This goal can be specialized
to testing every link.

When generating test packets, there are two main con-
straints: (1) Port: ATPG must use only test terminals that
are available; (2) Header: ATPG must use only headers that
each test terminal is permitted to send. For example, the
network administrator may only allow using a specific set of
VLANs. Formally:

Problem 1 (Test Packet Selection). For a network
with the switch functions, {T1, ..., Tn}, and topology func-
tion, Γ, find the minimum set of test packets to exercise all
reachable rules, subject to the port and header constraints.

We choose test packets using an algorithm we call Test
Packet Selection (TPS) algorithm. TPS first finds all the
equivalent classes between each pair of available ports. An
equivalent class is a set of packets that exercise the same
combination of rules. It then samples each class to find the
test packets, and finally compresses the resulting set of test
packets to find the minimum covering set.

Step 1: Generate an all-pairs reachability table.
We start by determining the complete set of packet headers
that can be sent from each test terminal, to every other test
terminal. For each packet header, we find the complete set
of rules it exercises along the path. For this, we directly
apply the all-pairs reachability algorithm described in [12]:
On every terminal port, we apply an all-x header (a header
which has all wildcarded bits) to the transfer function of the
first hub boxes connected to test terminals. If there is a
header constraint, we apply it here. For example, if we can
only send traffic on VLAN A, then instead of starting with
an all-x header, we set the VLAN tag bits to A. We follow
the packet through the network using the network function
and record the rule history of each resulting packet using
pk.history. Once this is done for all pairs of terminal ports,
we can generate an all-pairs reachability table as shown in
Table 3. For each row, the header column is a wildcard ex-
pression representing the equivalent class that can reach an
egress test terminal from an ingress test terminal. Packets
matching this header will follow the same set of switch rules,
as shown in the right-hand column.

Header Ingress Port Egress Port Rule History
h1 p11 p12 [r11, r12, . . .]
h2 p21 p22 [r21, r22, . . .]
...
hn pn1 pn2 [rn1, rn2, . . .]

Table 3: All-pairs reachability table: all possible headers
from every terminal to every other terminal, along with
the rules they exercise.

Figure 6 shows a simple example network and Table 4 is
the corresponding all-pairs reachability table. For example,
if we inject all-x test packets at PA, they will pass through
box A. It forwards packets with dst ip = 10.0/16 to B
and those with dst ip = 10.1/16 to C. Box B then for-
wards dst ip = 10.0/16, tcp = 80 to PB and box C forwards
dst ip = 10.1/16 to PC . These are reflected in the first two
rows of Table 4.

Step 2: Sampling. Next, we need to pick at least one
test packet to exercise every (reachable) rule. In fact, by
picking one packet in an equivalence class, we can test all of
the rules reached by the class. The simplest scheme is to ran-
domly pick one packet per class. This scheme only catches
faults for which all packets covered by the same rule will
experience the same fault (e.g. a link failure). At the other
extreme, if we want to catch a fault for a specific header
within a equivalence class, then we need to test every header
in that class. We discuss these issues, and our fault model,
in Section 4.2.

Step 3: Compression. Several of the test packets picked
in Step 2 exercise the same rule. We therefore find the
minimum subset of the test packets for which the union
of their rule histories covers all rules in the network. The
cover can be changed to cover all links (for liveness only)
or all router queues (for performance only). This is the

rA1: dst_ip=10.0/16 → Port 0
rA2: dst_ip=10.1/16 → Port 1
rA3: dst_ip=10.2/16 → Port 2

rB1: dst_ip=10.2/16 → Port 2
rB2: dst_ip=10.1/16 → Port 1
rB3: dst_ip=10.0/16 → rB4

rB4: tcp=80 → Port 0

PA

0

1

2

PB

PC

0

1

2

0

1

2

rC1: in_port=1 → Port 0,2
rC2: in_port=0,2 → Port 1

A B

C

Figure 6: Example topology with three network devices.

classical Min-Set-Cover problem. While NP-Complete, a
greedy O(N2) algorithm provides a very good approxima-
tion, where N is the number of test packets. We call the
resulting (approximately) minimum set of packets, the reg-
ular test packets. The remaining test packets not picked for
the min set are called the reserved test packets. In Table 4,
{p1, p2, p3, p4, p5} are regular test packets and {p6} is a re-
served test packet. Reserved test packets are useful for fault
localization (Section 4.2).

4.1.2 Properties
TPS algorithm has the following useful properties:

Property 1 (Maximum Coverage). The set of test
packets exercise all reachable rules, given the port and header
constraints.

Proof Sketch: We define a rule to be reachable if it can
be exercised by at least one packet satisfying the header con-
straint, and can be received by one of the test terminals. If
a rule is reachable, it will be in the all-pairs reachability ta-
ble, and set cover will pick at least one packet that exercises
that rule.

Some rules are not reachable. One rule can obscure an-
other: for example one IP address prefix might be obscured
by a set of more specific prefixes. Sometimes these are de-
liberate (to provide backup when a higher priority rule fails
or is removed); sometimes they are due to misconfiguration.

Property 2 (Completeness). For a given set of port
and header constraints, the pre-sampled set of test packets
selected by TPS represents all possible tests giving complete
coverage with minimum test packets.

Property 3 (Polynomial Runtime). The complexity
of finding test packets is O(TDR2) where T is the number
of test terminals, D is the network diameter, and R is the
typical number of rules in each box.

Proof Sketch: As explained in [12], the complexity of
finding reachability from one input port to every port in the
network is O(DR2). We repeat this process once per test
terminal.

4.2 Fault Localization
ATPG picks and periodically sends a set of test packets.

If test packets fail we also need to pinpoint the fault(s) that
caused the problem.

Header Ingress Port Egress Port Rule History
p1 dst_ip=10.0/16, tcp=80 PA PB rA1, rB3, rB4, link AB
p2 dst_ip=10.1/16 PA PC rA2, rC2, link AC
p3 dst_ip=10.2/16 PB PA rB2, rA3, link AB
p4 dst_ip=10.1/16 PB PC rB2, rC2, link BC
p5 dst_ip=10.2/16 PC PA rC1, rA3, link BC

(p6) dst_ip=10.2/16, tcp=80 PC PB rC1, rB3, rB4, link BC

Table 4: Test packets for the example network depicted in Figure 6. p6 is stored as a reserved packet.

4.2.1 Fault model
A rule fails if its observed behavior is different from what

we expected. We keep track of where rules fail using a result
function R. For a particular rule, r, the result function is
defined as

R(r, pk) =

{
0 if pk fails at rule r

1 if pk succeeds at rule r

“Success” and “failure” depend on the nature of the rule:
A failed forwarding rule means a test packet is not delivered
to its intended output port, whereas a drop rule behaves
correctly when packets are dropped. Similarly, a link failure
is a forwarding rule failure in the topology function, and if
an output link is congested, it will be captured by increased
travel time of a packet.

If we consider all the packets matching a rule, we can
divide faults into two categories: action faults and match
faults. An action fault is when every packet matching the
rule is processed the wrong way. Examples of action faults
include unexpected packet loss, a missing rule, congestion,
and mis-wiring. On the other hand, match faults are harder
to find because they only affect some of the packets matching
the rule, for example when a rule matches a header that it
should not match, or a rule misses a header that it should
match. If we want to catch match faults we must sample
carefully, and at least one test packet must exercise each
faulty region. For example, if a TCAM bit is supposed to
be x, but is “stuck at 1”, then all packets with a 0 at that
location will be ignored. To catch the error, we need at
least two packets to exercise the bit: one with 1 and the
other with 0.

We will only consider action faults, because they cover a
large number of likely failure conditions, and will be detected
by only one test packet per rule. We leave match faults for
future work.

We usually can only observe a packet at the edge of the
network, and cannot observe it after it has been processed
by every rule. Therefore, we define an end-to-end version of
the result function

R(pk) =

{
0 if pk fails

1 if pk succeeds

4.2.2 Algorithm
Our algorithm for pinpointing faulty rules assumes that a

test packet will succeed only if it succeeds at every hop. For
intuition, consider ping - a ping will succeed only when all
the forwarding rules along the path behave correctly. Simi-
larly, if a queue is congested, any packets that travel through
it will incur higher latency and may fail an end-to-end test.
Formally:

Assumption 1 (Fault propagation). R(pk) = 1 if
and only if ∀r ∈ pk.history, R(r, pk) = 1

To pinpoint a faulty rule, we start by finding the minimum
set of potentially faulty rules. Formally:

Problem 2 (Fault Localization). Given a list of (pk0,
R(pk0), (pk1,R(pk1), . . . tuples, find all r that satisfies ∃pki,
R(pki, r) = 0.

We solve this problem opportunistically and in steps.
Step 1: Consider the results from our regular test pack-

ets. For every passing test, place all the rules they exercise
into the set of passing rules, P . If we similarly define all
rules traversed by failing test packets F , then one or more
of the rules in F are in error. Therefore F − P is a set of
suspect rules.
Step 2: We want to make the set of suspect rules as small

as possible by weeding out all the correctly working rules.
For this we make use of the reserved packets (which were
the packets eliminated by the Min-Set-Cover). From the
reserved packets, we find those whose rule history contains
exactly one rule from the suspect set and send them. If the
test packet fails, it shows that the exercised rule is for sure in
error. If it passes, we can remove that rule from the suspect
set. We then repeat the same process for the rest of the
suspect set.

Step 3: In most cases we have a small enough suspect
set that we can stop here and report them all. However,
we can further narrow down the suspect set by sending test
packets that exercise two or more of the rules in the suspect
set using Step 2’s technique. If these test packets pass, it
shows that none of the exercised rules are in error and we can
remove them from the suspect set. If our Fault Propagation
assumption holds, the method will not miss any faults, and
therefore will have no false negatives.
False positives: The localization method may introduce

false positives, which are left in the suspect set at the end
of Step 3. Specifically, one or more rules in the suspect set
may in fact behave correctly.

When two rules are in series and there is no other path
to exercise only one of them, they are indistinguishable; any
packet that exercises one of them will also exercise the other.
Hence if only one rule fails, we cannot tell which. This can
happen when, for example, an ACL rule is followed immedi-
ately by a forwarding rule, both matching the same header.
Indistinguishable rules can be reduced by adding more test
terminals. In the extreme, imagine that if we have test ter-
minals before and after each rule, with sufficient test pack-
ets, we can distinguish every rule. Hence, the deployment
of test terminals not only affects test coverage, but also the
accuracy with which we can pinpoint the fault.

5. USE CASES
We can use ATPG for both functional and performance

testing, including the cases we list below.

R1	

R4	

R3	

R2	

header=A	 →	 Drop	

Header: all-x Header: A

Header: A

Header: A

Header:

Header: A \ C

A \ Bheader=B	 →	 Fwd	

header=C	 →	 Fwd	

Figure 7: Generate packets to test drop rules: “flip” the
rule to a broadcast rule in the analysis.

5.1 Functional testing
We can test the functional correctness of a network by

testing that every reachable forwarding and drop rule in the
network is behaving correctly:

Forward rule: A forwarding rule is behaving correctly
if a test packet exercises the rule, and leaves on the correct
port with the correct header.

Link rule: A link rule is a special case of a forwarding
rule. It can be tested by making sure a test packet passes
correctly over the link without header modifications.

Drop rule: Testing drop rules is harder because we are
verifying the absence of received test packets. We need to
know which test packets might reach an egress test terminal
if a drop rule was to fail. To find these packets, in the
all-pairs reachability analysis we “flip” each drop rule to a
broadcast rule in the transfer functions. We do not actually
change rules in the switches - we simply emulate the failure
to identify all the ways a packet could reach the egress test
terminals if the drop rule was to fail.

As an example consider Figure 7. To test the drop rule in
R2, we inject the all-x test packet at Terminal 1. If the drop
rule was instead a broadcast rule it would forward the packet
to all of its output ports, and the test packets would reach
Terminals 2 and 3. Now we sample the resulting equivalent
classes as usual: we pick one sample test packet from A∩B
and one from A ∩C. Note that we have to test both A ∩B
and A ∩ C because the drop rule may have failed at R2,
resulting an unexpected packet to be received at either test
terminal 2 (A ∩ C) or test terminal 3 (A ∩B).

Finally, we send and expect the test packets not to appear,
since their arrival would indicate a failure of R2’s drop rule.

5.2 Performance testing
We can use ATPG to monitor the performance of links,

queues and QoS classes in the network, and even monitor
SLAs.

Congestion: If a queue is congested, packets will expe-
rience longer queueing delays. This can be considered as a
(performance) fault. ATPG lets us generate one way con-
gestion tests to measure the latency between every pair of
test terminals; once the latency passed a threshold, fault
localization will pinpoint the congested queue, as with reg-
ular faults. With appropriate headers, we can test links or
queues as in Alice’s second problem.

Available bandwidth: Similarly, we can measure the
available bandwidth of a link, or for a particular service

class. ATPG will generate the test packet headers we need
to test every link, or every queue, or every service class;
we then send a stream of packets with these headers to
measure the bandwidth. We can use destructive tests, like
iperf/netperf, or more gentle approaches like packet pairs
and packet trains [15]. If we know the available bandwidth
of a particular service class should not fall below a certain
threshold, when it happens we can use the fault localiza-
tion algorithm to triangulate and pinpoint the problematic
switch/queue.

Strict priorities: Likewise, we can determine if two
queues, or service classes, are in different strict priority classes.
If they are, then packets sent in the lower priority class
should never affect the available bandwidth or latency of
packets in the higher priority class. We can verify the rel-
ative priority by generating packet headers to congest the
lower class, and verify that the latency and available band-
width of the higher class is unchanged. If it is, we use fault
localization to pinpoint the problem switch/queue.

6. IMPLEMENTATION
We implemented a prototype system to automatically parse

router configurations and generate a set of test packets for
the network. The code is publicly available [1].

6.1 Test packet generator
The test packet generator, written in Python, contains a

Cisco IOS configuration parser and a Juniper Junos parser.
The data plane information, including router configurations,
FIBs, MAC learning tables, and network topologies, is col-
lected and parsed through the command line interface (Cisco
IOS) or XML files (Junos). The generator then uses the Has-
sel [9] header space analysis library to construct switch and
topology functions.

All-pairs reachability is computed using the multiprocess
parallel-processing module shipped with Python. Each pro-
cess considers a subset of the test ports, and finds all the
reachable ports from each one. After reachability tests are
complete, results are collected and the master process ex-
ecutes the Min-Set-Cover algorithm. Test packets and the
set of tested rules are stored in a SQLite database.

6.2 Network monitor
The network monitor assumes there are special test agents

in the network that are able to send/receive test packets.
The network monitor reads the database and constructs test
packets, and instructs each agent to send the appropriate
packets. Currently, test agents separate test packets by IP
Proto field and TCP/UDP port number, but other fields,
such as IP option, can also be used. If some of the tests
fail, the monitor selects additional test packets from reserved
packets to pinpoint the problem. The process repeats until
the fault has been identified. The monitor uses JSON to
communicate with the test agents, and uses SQLite’s string
matching to lookup test packets efficiently.

6.3 Alternate implementations
Our prototype was designed to be minimally invasive, re-

quiring no changes to the network except to add terminals
at the edge. In networks requiring faster diagnosis, the fol-
lowing extensions are possible:

Cooperative routers: A new feature could be added
to switches/routers, so that a central ATPG system can in-

struct a router to send/receive test packets. In fact, for
manufacturing testing purposes, it is likely that almost ev-
ery commercial switch/router can already do this; we just
need an open interface to control them.

SDN-based testing: In a software defined network (SDN)
such as OpenFlow [23], the controller could directly instruct
the switch to send test packets, and to detect and forward
received test packets to the control plane. For performance
testing, test packets need to be time-stamped at the routers.

7. EVALUATION

7.1 Data Sets: Stanford and Internet2
We evaluated our prototype system on two sets of net-

work configurations: the Stanford University backbone and
the Internet2 backbone, representing a mid-size enterprise
network and a nationwide backbone network respectively.

Stanford Backbone: With a population of over 15,000
students, 2,000 faculty, and five /16 IPv4 subnets, Stanford
represents a large enterprise network. There are 14 opera-
tional zone (OZ) Cisco routers connected via 10 Ethernet
switches to 2 backbone Cisco routers that in turn connect
Stanford to the outside world. Overall, the network has
more than 757,000 forwarding entries and 1,500 ACL rules.
Data plane configurations are collected through command
line interfaces. Stanford has made the entire configuration
rule set public [1].

Internet2: Internet2 is a nationwide backbone network
with 9 Juniper T1600 routers and 100 Gb/s interfaces, sup-
porting over 66,000 institutions in United States. There
are about 100,000 IPv4 forwarding rules. All Internet2 con-
figurations and FIBs of the core routers are publicly avail-
able [10], with the exception of ACL rules, which are re-
moved for security concerns. Although IPv6 and MPLS en-
tries are also available, we only use IPv4 rules in this paper.

7.2 Test Packet Generation
We ran our ATPG tool on a quad core Intel Core i7 CPU

3.2GHz and 6GB memory, using 8 threads. For a given num-
ber of test terminals, we generated the minimum set of test
packets needed to test all the reachable rules in the Stanford
and Internet2 backbones. Table 5 shows the number of test
packets we need to send. For example, the first row tells us
that if we attach test terminals to 10% of the ports, then
we can test all of the reachable rules (22.2% of the total)
by sending 725 test packets. If every edge port can act as a
test terminal, then we can test 100% of the rules by send-
ing just 3,871 test packets. The “Time” row indicates how
long it takes for our ATPG algorithm to run and tells us the
test packets we need to send — the worst case took about
an hour (most of the time is spent calculating the all-pairs
reachability).

To put these results into perspective, each test for the
Stanford backbone requires sending about 907 packets per
port in the worst case. If these packets were sent over a single
1Gb/s link we could test the entire network in less than 1ms
(assuming each test packet is 100bytes, not considering the
propagation delay). Put another way, if we test the entire
set of forwarding rules ten times every second, we would use
less than 1% of the link bandwidth!

Similarly, we can test all the forwarding rules in Internet2
by sending 4,557 test packets per port in the worst case.

Even if the test packets were sent over 10Gb/s links, we
could test the entire forwarding rules in less than 0.5ms,
or ten times every second using less than 1% of the link
bandwidth.

We also found that for 100% link coverage (instead of rule
coverage), we only need 54 packets for Stanford, and 20 for
Internet2.

The table also shows the large benefit gained by compress-
ing the number of test packets — in most cases, the total
number of test packets is reduced by a factor of 20-100 using
the minimum set cover algorithm.

Coverage is the ratio of the number of rules exercised to
the total number of reachable rules. Our results shows that
the coverage grows linearly with the number of test termi-
nals available. While it is possible to carefully select the
placement of test terminals to achieve higher coverage, we
find that the benefit is marginal with real data sets.

Rule structure: The reason we need so few test packets
is because of the structure of the rules and the routing. Most
rules are part of an end-to-end route, and so multiple routers
hold the same rule. Similarly, multiple devices contain the
same ACL or QoS configuration because they are part of
a network wide policy. Therefore the number of distinct
regions of header space grow linearly, not exponentially, with
the diameter of the network.

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 2 4 6 8 10 12 14 16

C
D

F

Recurrence

Stanford

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 2 3 4 5 6 7 8 9

C
D

F

Recurrence

Internet2

Figure 8: The cumulative distribution function of rule
repetition, ignoring different action fields.

We can verify this structure by clustering rules in Stan-
ford and Internet2 that match the same header patterns.
Figure 8 shows the distribution of rule repetition in Stan-
ford and Internet2. In both networks, 60%-70% of matching
patterns appear in more than one router. We also find that
this repetition is correlated to the network topology. In the
Stanford backbone, which has a two level hierarchy, match-
ing patterns commonly appear in 2 (50.3%) or 4 (17.3%)
routers, which represents the length of edge-to-Internet and
edge-to-edge routes. In Internet2, 75.1% of all distinct rules
are replicated 9 times, which is the number of routers in the
topology.

7.3 Testing in Emulated Network
To evaluate the network monitor and test agents, we repli-

cated the Stanford backbone network in Mininet [16], a
container based network emulator. We used Open vSwitch
(OVS) [25] to emulate the routers, using the real port config-
uration information, and connected them according to the
real topology. We then translated the forwarding entries
in the Stanford backbone network into equivalent Open-
Flow [23] rules and installed them in the OVS switches with
Beacon [2]. We used emulated hosts to send and receive
test packets generated by ATPG. Figure 9 shows the part
of network that is used for experiments in this section. We
now present different test scenarios and the corresponding
results:

https://github.com/eastzone/atpg/wiki/Offline-Evaluation
https://github.com/eastzone/atpg/wiki/Offline-Evaluation
https://github.com/eastzone/atpg/wiki/Offline-Evaluation
https://github.com/eastzone/atpg/wiki/Offline-Evaluation

Stanford (298 ports) 10% 40% 70% 100% Edge (81%)
Total Packets 10,042 104,236 413,158 621,402 438,686
Regular Packets 725 2,613 3,627 3,871 3,319
Packets/Port (Avg) 25.00 18.98 17.43 12.99 18.02
Packets/Port (Max) 206 579 874 907 792
Time to send (Max) 0.165ms 0.463ms 0.699ms 0.726ms 0.634ms
Coverage 22.2% 57.7% 81.4% 100% 78.5%
Computation Time 152.53s 603.02s 2,363.67s 3,524.62s 2,807.01s

Internet2 (345 ports) 10% 40% 70% 100% Edge (92%)
Total Packets 30,387 485,592 1,407,895 3,037,335 3,036,948
Regular Packets 5,930 17,800 32,352 35,462 35,416
Packets/Port (Avg) 159.0 129.0 134.2 102.8 102.7
Packets/Port (Max) 2,550 3,421 2,445 4,557 3,492
Time to send (Max) 0.204ms 0.274ms 0.196ms 0.365ms 0.279ms
Coverage 16.9% 51.4% 80.3% 100% 100%
Computation Time 129.14s 582.28s 1,197.07s 2,173.79s 1,992.52s

Table 5: Test packet generation results for Stanford backbone (top) and Internet2 (bottom), against the number of
ports selected for deploying test terminals. “Time to send” packets is calculated on a per port basis, assuming 100B
per test packet, 1Gbps link for Stanford and 10Gbps for Internet2.

s3	 s5	 s2	

yoza	

s4	 s1	

boza	 coza	 pozb	 poza	 roza	 goza	

bbra	
goza-‐coza	
boza-‐poza	
boza-‐coza	

Func5onal	 Tes5ng	

Performance	 Tes5ng	
UDP	 Traffic	
Test	 Packets	

 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21

 0 10 20 30 40 50 60

Th
ro

ug
hp

ut
 (M

bp
s)

Time (s)

poza-yoza
roza-yoza

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0 10 20 30 40 50 60

La
te

nc
y

(m
s)

Time (s)

pozb-roza
pozb-yoza

Figure 9: A portion of the Stanford backbone network
showing the test packets used for functional and perfor-
mance testing examples in Section 7.3.

Forwarding Error: To emulate a functional error, we
deliberately created a fault by replacing the action of an IP
forwarding rule in boza matching on dst ip = 172.20.10.32/27
with a drop action (we called this rule Rboza

1). As a result
of this fault, test packets from boza to coza with dst ip =
172.20.10.33 failed and were not received at coza. Table 6
shows two other test packets we used to localize and pin-
point the fault. These test packets shown in Figure 9 in
goza − coza and boza − poza are received correctly at the
end terminals. From the rule history of the passing and fail-
ing packets in Table 3, we deduce that only rule Rboza

1 could
possibly have caused the problem, as all the other rules ap-
pear in the rule history of a received test packet.

Congestion: We detect congestion by measuring the one-
way latency of test packets. In our emulation environment,
all terminals are synchronized to the host’s clock so the la-

tency can be calculated with a single time-stamp and one-
way communication4.

To create congestion, we rate-limited all the links in the
emulated Stanford network to 30Mb/s, and create two 20Mb/s
UDP flows: poza to yoza at t = 0 and roza to yoza at
t = 30s, which will congest the link bbra− yoza starting at
t = 30s. The bottom left graph next to yoza in Figure 9
shows the two UDP flows. The queue inside the routers
will build up and test packets will experience longer queu-
ing delay. The bottom right graph next to pozb shows the
latency experienced by two test packets, one from pozb to
roza and the other one from pozb to yoza. At t = 30s, the
bozb − yoza test packet experience a much higher latency,
correctly signaling congestion. Since these two test packets
share the bozb−s1 and s1−bbra links, we can conclude that
the congestion is not happening in these two links, therefore
we can correctly infer that bbra−yoza is the congested link.

Available Bandwidth: ATPG can also be used to mon-
itor available bandwidth. For this experiment, we used
Pathload [11], a bandwidth probing tool based on packet
pairs/packet trains. We repeated the previous experiment,
but decreased the two UDP flows to 10Mb/s, so that the bot-
tleneck available bandwidth was 10Mb/s. Pathload reports
that bozb−yoza has an available bandwidth5 of 11.715Mb/s,
bozb−roza has an available bandwidth of 19.935Mb/s, while
the other (idle) terminals report 30.60Mb/s. Using the same
argument as before, we automatically conclude that bbra−
yoza link is the bottleneck link with 10Mb/s available band-
width.

Priority: We created priority queues in OVS using Linux’s
htb scheduler and tc utilities. We replicated the previously
“failed”test case pozb−yoza for high and low priority queues
respectively.6 Figure 10 shows the result.

We first repeated the congestion experiment. When the
low priority queue is congested (i.e. both UDP flows mapped
to low priority queues), only low priority test packets are

4To measure latency in a real network, two-way communica-
tion is usually necessary. However, relative change of latency
is sufficient to uncover congestion.
5All numbers are the average of 10 repeated measurements.
6The Stanford data set does not include the priority settings.

https://github.com/eastzone/atpg/wiki/Offline-Evaluation
https://github.com/eastzone/atpg/wiki/Offline-Evaluation
https://github.com/eastzone/atpg/wiki/Mini-Stanford
https://github.com/eastzone/atpg/wiki/Mini-Stanford

Table 6: Test packets used in the functional testing example. In the rule history column, R is the IP forwarding rule,
L is a link rule and S is the broadcast rule of switches. R1 is the IP forwarding rule matching on 172.20.10.32/27 and R2

matches on 171.67.222.64/27. Le
b in the link rule from node b to node e. The table highlights the common rules between

the passed test packets and the failed one. It is obvious from the results that rule Rboza
1 is in error.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50 60

La
te

nc
y

(m
s)

Time (s)

High priority test packet
Low priority test packet

(a) Low

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50 60

La
te

nc
y

(m
s)

Time (s)

High priority test packet
Low priority test packet

(b) High
Congested Slice Terminal Result/Mbps

High
High 11.95
Low 11.66

Low
High 23.22
Low 11.78

(c) Available bandwidth

Figure 10: Priority testing: Latency measured by test
agents when low (a) or high (b) priority slice is con-
gested; available bandwidth measurements when the bot-
tleneck is in low/high priority slices (c).

affected. However, when the high priority slice is congested,
low and high priority test packets experience the congestion
and are delayed. Similarly, when repeating the available
bandwidth experiment, high priority flows receive the same
available bandwidth whether we use high or low priority
test packets. But for low priority flows, the high priority
test packets correctly receive the full link bandwidth.

7.4 Production Network Deployment
We deployed an experimental ATPG system in 3 build-

ings in Stanford University that host the Computer Science
and Electrical Engineering departments. The production
network consists of over 30 Ethernet switches and a Cisco
router connecting to the campus backbone. For test termi-
nals, we utilized the 53 WiFi access points (running Linux)
that were already installed throughout the buildings. This
allowed us to achieve high coverage on switches and links.
However, we could only run ATPG on essentially a Layer 2
(bridged) Network.

On October 1-10, 2012, the ATPG system was used for a
10-day ping experiment. Since the network configurations
remained static during this period, instead of reading the
configuration from the switches dynamically, we derived the
network model based on the topology. In other words, for a
Layer 2 bridged network, it is easy to infer the forwarding
entry in each switch for each MAC address without getting
access to the forwarding tables in all 30 switches. We only
used ping to generate test packets. Pings suffice because
in the subnetwork we tested there are no Layer 3 rules or
ACLs. Each test agent downloads a list of ping targets from
a central web server every 10 minutes, and conducts ping

tests every 10 seconds. Test results were logged locally as
files and collected daily for analysis.

 0
 50

 100
 150
 200
 250
 300
 350
 400

Oct 02
14:00

Oct 02
15:00

Oct 02
16:00

Oct 02
17:00

Oct 02
18:00

Oct 02
19:00

Oct 02
20:00

Fa
ilu

re
s/

M
in

ut
e

 0

 2

 4

 6

 8

 10

 12

 14

Oct 02
14:00

Oct 02
15:00

Oct 02
16:00

Oct 02
17:00

Oct 02
18:00

Oct 02
19:00

Oct 02
20:00

Fa
ilu

re
s/

M
in

ut
e

Failures with ATPG's link cover suite

Failures with All-pairs ping

Figure 11: The Oct 2, 2012 production network outages
captured by the ATPG system as seen from the lens of an
inefficient cover (all-pairs, top picture) and an efficient
minimum cover (bottom picture). Two outages occured
at 4PM and 6:30PM respectively.

During the experiment, a major network outage occurred
on October 2. Figure 11 shows the number of failed test
cases during that period. While both all-pairs ping and
ATPG’s selected test suite correctly captured the outage,
ATPG uses significantly less test packets. In fact, ATPG
uses only 28 test packets per round compared with 2756
packets in all-pairs ping, a 100x reduction. It is easy to see
that the reduction is from quadratic overhead (for all-pairs
testing between 53 terminals) to linear overhead (for a set
cover of the 30 links between switches). We note that while
the set cover in this experiment is so simple that it could be
computed by hand, other networks will have Layer 3 rules
and more complex topologies requiring the ATPG minimum
set cover algorithm.

The network managers confirmed that the later outage
was caused by a loop that was accidentally created during
switch testing. This caused several links to fail and hence
more than 300 pings failed per minute. The managers were
unable to determine why the first failure occured. Despite
this lack of understanding of the root cause, we emphasize
that the ATPG system correctly detected the outage in both
cases and pinpointed the affected links and switches.

https://github.com/eastzone/atpg/wiki/Mini-Stanford
https://github.com/eastzone/atpg/wiki/Mini-Stanford
https://github.com/eastzone/atpg/wiki/Mini-Stanford
https://github.com/eastzone/atpg/wiki/Mini-Stanford
https://github.com/eastzone/atpg/wiki/Mini-Stanford
https://github.com/eastzone/atpg/wiki/Mini-Stanford
https://github.com/eastzone/atpg/wiki/Production-Deployment
https://github.com/eastzone/atpg/wiki/Production-Deployment

8. DISCUSSION

8.1 Overhead and Performance
The principal sources of overhead for ATPG are polling

the network periodically for forwarding state and perform-
ing all-pairs reachability. While one can reduce overhead by
rerunning the offline ATPG calculation less frequently, this
runs the risk of using out-of-date forwarding information.
Instead, we reduce overhead in two ways. First, we have re-
cently sped up the all-pairs reachability calculation using a
fast multithreaded/multi-machine header space library. Sec-
ond, instead of extracting the complete network state every
time ATPG is triggered, an incremental state updater can
significantly reduce both the retrieval time and the time to
calculate reachability. We are working on a real-time version
of ATPG system that incorporates both techniques.

Test agents within terminals incur minimal overhead be-
cause they need to merely demultiplex test packets addressed
to their IP address at a modest rate (say 1 per msec) com-
pared to the link speeds most modern CPUs and operating
systems are capable of receiving (1 Gbps or higher).

8.2 Limitation
As with all testing methodologies, ATPG has limitations:

1) Dynamic boxes: ATPG cannot model boxes whose in-
ternal state can be changed by test packets. For example, a
NAT that dynamically assigns TCP ports to outgoing pack-
ets can confuse the online monitor as the same test packet
can give different results. 2) Non-deterministic boxes:
Boxes can load-balance packets based on a hash function
of packet fields, usually combined with a random seed; this
is common in multipath routing such as ECMP. When the
hash algorithm and parameters are unknown, ATPG can-
not properly model such rules. However, if there are known
packet patterns that can iterate through all possible out-
puts, ATPG can generate packets to traverse every output.
3) Invisible rules: A failed rule can make a backup rule
active, and as a result no changes may be observed by the
test packets. This can happen when, despite a failure, a
test packet is routed to the expected destination by other
rules. In addition, an error in a backup rule cannot be de-
tected in normal operation. Another example is when two
drop rules appear in a row: the failure of one rule is unde-
tectable since the effect will be masked by the other rule. 4)
Transient network states: ATPG cannot uncover errors
whose lifetime is shorter than the time between each round
of tests. For example, congestion may disappear before an
available bandwidth probing test concludes. Finer-grained
test agents are needed to capture abnormalities of short du-
ration. 5) Sampling: ATPG uses sampling when generat-
ing test packets. As a result, ATPG can miss match faults
since the error is not uniform across all matching headers. In
the worst case (when only one header is in error), exhaustive
testing is needed.

9. RELATED WORK
We are unaware of earlier techniques that automatically

generate test packets from configurations. The closest re-
lated work we know of are offline tools that check invariants
of different components in networks. On the control plane,
NICE [3] attempts to exhaustively cover the code paths sym-
bolically in controller applications with the help of simplified

switch/host models. On the data plane, Anteater [21] mod-
els invariants as boolean satisfiability problems and checks
them against configurations with a SAT solver. Header
Space Analysis [12] uses a geometric model to check reacha-
bility, detect loops, and verify slicing. Recently, SOFT [14]
is proposed to verify the consistency between different Open-
Flow agent implementations that are responsible for bridg-
ing control and data planes in the SDN context. ATPG com-
plements these checkers by directly testing the data plane
and covering a significant set of dynamic or performance
errors that cannot be otherwise captured.

End-to-end probes have long been used in network diag-
nosis. Duffield uses Binary Tomography [5, 6] to detect the
smallest set of failed links that explains end-to-end measure-
ments. NetDiagnoser [4] further combines end-to-end probes
with routing data. Researchers also use various models to
correlate network metrics with network events [13,19,20,22].
Recently, mining low-quality, unstructured data, such as
router configurations and network tickets has attracted in-
terest [8, 17, 30]. By contrast, the primary contribution of
ATPG is not fault localization, but determining a compact
set of end-to-end measurements that can cover every link or
every rule. Further, ATPG is not limited to liveness testing
but can be applied to checking higher level properties such
as performance.

Many approaches to develop a measurement-friendly ar-
chitecture are proposed for managing large networks [18,24,
31]. It is also suggested that routers should be able to sam-
ple the packets for measurement [7]. Our approach is com-
plementary to these proposals: ATPG does not dictate the
locations of injecting network probes and how these probes
should be constructed. By incorporating input and port
constraints, ATPG can generate test packets and injection
points using existing deployment of measurement devices.

10. CONCLUSION
Testing liveness of a network is a fundamental problem

for ISPs and large data center operators. Sending probes
between every pair of edge ports is neither exhaustive nor
scalable. It suffices to find a minimal set of end-to-end pack-
ets that traverse each link. Doing this requires a way of
abstracting across device specific configuration files (e.g.,
header space), generating headers and the links they reach
(e.g., all-pairs reachability), and finally determining a min-
imum set of test packets (Min-Set-Cover). Even the funda-
mental problem of automatically generating test packets for
efficient liveness testing requires techniques akin to ATPG.

ATPG goes much further than liveness testing, however,
with the same framework. ATPG can test for reachability
policy (by testing all rules including drop rules) and per-
formance health (by associating performance measures such
as latency and loss with test packets). Our implementa-
tion also augments testing with a simple fault localization
scheme also constructed using the header space framework.
As in software testing, the formal model helps maximize test
coverage with minimum test packets. Our results show that
all forwarding rules in Stanford backbone or Internet2 can
be exercised by a surprisingly small number of test packets
(<4,000 for Stanford, and <40,000 for Internet2).

Network managers today use primitive tools such as ping
and traceroute. Our survey results indicate that they are
eager for more sophisticated tools. Other fields of engi-
neering indicate that these demands are not unreasonable:

for example, both the ASIC and software design industries
are buttressed by billion dollar tool businesses that supply
techniques for both static (e.g., design rules) and dynamic
(e.g., timing) verification. We hope ATPG is a useful start-
ing point for automated dynamic testing of production net-
works.

11. ACKNOWLEDGEMENT
We would like to thank our shepherd, Dejan Kostic, and

the anonymous reviewers for their valuable comments. We
thank Johan van Reijendam, Charles M. Orgish, Joe Little
(Stanford University) and Thomas C. Knoeller, Matthew
P. Davy (Internet2) for providing router configuration sets
and sharing their operation experience. This research was
funded by NSF grants CNS-0832820, CNS-0855268, CNS-
1040593, and Stanford Graduate Fellowship.

12. REFERENCES
[1] ATPG code repository.

http://eastzone.github.com/atpg/.

[2] Beacon. http://www.beaconcontroller.net/.

[3] M. Canini, D. Venzano, P. Peresini, D. Kostic, and
J. Rexford. A NICE way to test openflow applications.
Proceedings of the 9th conference on Symposium on
Networked Systems Design & Implementation, 2012.

[4] A. Dhamdhere, R. Teixeira, C. Dovrolis, and C. Diot.
Netdiagnoser: troubleshooting network unreachabilities
using end-to-end probes and routing data. In Proceedings of
the 2007 ACM CoNEXT conference, CoNEXT ’07, pages
18:1–18:12, New York, NY, USA, 2007. ACM.

[5] N. Duffield. Network tomography of binary network
performance characteristics. Information Theory, IEEE
Transactions on, 52(12):5373 –5388, dec. 2006.

[6] N. Duffield, F. Lo Presti, V. Paxson, and D. Towsley.
Inferring link loss using striped unicast probes. In
INFOCOM 2001. Twentieth Annual Joint Conference of
the IEEE Computer and Communications Societies.
Proceedings. IEEE, volume 2, pages 915 –923 vol.2, 2001.

[7] N. G. Duffield and M. Grossglauser. Trajectory sampling
for direct traffic observation. IEEE/ACM Trans. Netw.,
9(3):280–292, June 2001.

[8] P. Gill, N. Jain, and N. Nagappan. Understanding network
failures in data centers: measurement, analysis, and
implications. In Proceedings of the ACM SIGCOMM 2011
conference, SIGCOMM ’11, pages 350–361, New York, NY,
USA, 2011. ACM.

[9] Hassel, the header space library.
https://bitbucket.org/peymank/hassel-public/.

[10] The Internet2 Observatory Data Collections.
http://www.internet2.edu/observatory/archive/
data-collections.html.

[11] M. Jain and C. Dovrolis. End-to-end available bandwidth:
measurement methodology, dynamics, and relation with tcp
throughput. IEEE/ACM Trans. Netw., 11(4):537–549,
Aug. 2003.

[12] P. Kazemian, G. Varghese, and N. McKeown. Header Space
Analysis: static checking for networks. Proceedings of the
9th conference on Symposium on Networked Systems
Design & Implementation, 2012.

[13] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren.
Ip fault localization via risk modeling. In Proceedings of the
2nd conference on Symposium on Networked Systems
Design & Implementation - Volume 2, NSDI’05, pages
57–70, Berkeley, CA, USA, 2005. USENIX Association.

[14] M. Kuzniar, P. Peresini, M. Canini, D. Venzano, and
D. Kostic. A SOFT way for openflow switch
interoperability testing. In Proceedings of the Seventh
COnference on emerging Networking EXperiments and
Technologies, CoNEXT ’12, 2012.

[15] K. Lai and M. Baker. Nettimer: a tool for measuring
bottleneck link, bandwidth. In Proceedings of the 3rd
conference on USENIX Symposium on Internet
Technologies and Systems - Volume 3, USITS’01, pages
11–11, Berkeley, CA, USA, 2001. USENIX Association.

[16] B. Lantz, B. Heller, and N. McKeown. A network in a
laptop: rapid prototyping for software-defined networks. In
Proceedings of the Ninth ACM SIGCOMM Workshop on
Hot Topics in Networks, Hotnets ’10, pages 19:1–19:6, New
York, NY, USA, 2010. ACM.

[17] F. Le, S. Lee, T. Wong, H. S. Kim, and D. Newcomb.
Detecting network-wide and router-specific
misconfigurations through data mining. IEEE/ACM Trans.
Netw., 17(1):66–79, Feb. 2009.

[18] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon,
T. Anderson, A. Krishnamurthy, and A. Venkataramani.
iplane: an information plane for distributed services. In
Proceedings of the 7th symposium on Operating systems
design and implementation, OSDI ’06, pages 367–380,
Berkeley, CA, USA, 2006. USENIX Association.

[19] A. Mahimkar, Z. Ge, J. Wang, J. Yates, Y. Zhang,
J. Emmons, B. Huntley, and M. Stockert. Rapid detection
of maintenance induced changes in service performance. In
Proceedings of the Eighth COnference on emerging
Networking EXperiments and Technologies, CoNEXT ’12,
pages 13:1–13:12, New York, NY, USA, 2011. ACM.

[20] A. Mahimkar, J. Yates, Y. Zhang, A. Shaikh, J. Wang,
Z. Ge, and C. T. Ee. Troubleshooting chronic conditions in
large ip networks. In Proceedings of the 2008 ACM
CoNEXT Conference, CoNEXT ’08, pages 2:1–2:12, New
York, NY, USA, 2008. ACM.

[21] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B.
Godfrey, and S. T. King. Debugging the data plane with
anteater. SIGCOMM Comput. Commun. Rev.,
41(4):290–301, Aug. 2011.

[22] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N.
Chuah, Y. Ganjali, and C. Diot. Characterization of
failures in an operational ip backbone network. IEEE/ACM
Trans. Netw., 16(4):749–762, Aug. 2008.

[23] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner.
OpenFlow: enabling innovation in campus networks.
SIGCOMM Comput. Commun. Rev., 38:69–74, March
2008.

[24] OnTimeMeasure. http://ontime.oar.net/.
[25] Open vSwitch. http://openvswitch.org/.

[26] All-pairs ping service for PlanetLab ceased.
http://lists.planet-lab.org/pipermail/users/
2005-July/001518.html.

[27] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and
D. Walker. Abstractions for network update. In Proceedings
of the ACM SIGCOMM 2012 conference, SIGCOMM ’12.
ACM, 2012.

[28] S. Shenker. The future of networking, and the past of
protocols.
http://opennetsummit.org/talks/shenker-tue.pdf.

[29] Troubleshooting the Network Survey. http:
//eastzone.github.com/atpg/docs/NetDebugSurvey.pdf.

[30] D. Turner, K. Levchenko, A. C. Snoeren, and S. Savage.
California fault lines: understanding the causes and impact
of network failures. SIGCOMM Comput. Commun. Rev.,
41(4):–, Aug. 2010.

[31] P. Yalagandula, P. Sharma, S. Banerjee, S. Basu, and S.-J.
Lee. S3: a scalable sensing service for monitoring large
networked systems. In Proceedings of the 2006 SIGCOMM
workshop on Internet network management, INM ’06,
pages 71–76, New York, NY, USA, 2006. ACM.

http://eastzone.github.com/atpg/
http://www.beaconcontroller.net/
https://bitbucket.org/peymank/hassel-public/
http://www.internet2.edu/observatory/archive/data-collections.html
http://www.internet2.edu/observatory/archive/data-collections.html
http://ontime.oar.net/
http://openvswitch.org/
http://lists.planet-lab.org/pipermail/users/2005-July/001518.html
http://lists.planet-lab.org/pipermail/users/2005-July/001518.html
http://opennetsummit.org/talks/shenker-tue.pdf
http://eastzone.github.com/atpg/docs/NetDebugSurvey.pdf
http://eastzone.github.com/atpg/docs/NetDebugSurvey.pdf

	Introduction
	Current Practice
	Network Model
	Definitions
	Life of a packet

	ATPG System
	Test Packet Generation
	Algorithm
	Properties

	Fault Localization
	Fault model
	Algorithm

	Use cases
	Functional testing
	Performance testing

	Implementation
	Test packet generator
	Network monitor
	Alternate implementations

	Evaluation
	Data Sets: Stanford and Internet2
	Test Packet Generation
	Testing in Emulated Network
	Production Network Deployment

	Discussion
	Overhead and Performance
	Limitation

	Related Work
	Conclusion
	Acknowledgement
	References

