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Abstract—Networks are getting larger and more complex,
yet administrators rely on rudimentary tools such as and

to debug problems. We propose an automated and
systematic approach for testing and debugging networks called
“Automatic Test Packet Generation” (ATPG). ATPG reads router
configurations and generates a device-independent model. The
model is used to generate a minimum set of test packets to (mini-
mally) exercise every link in the network or (maximally) exercise
every rule in the network. Test packets are sent periodically, and
detected failures trigger a separate mechanism to localize the
fault. ATPG can detect both functional (e.g., incorrect firewall
rule) and performance problems (e.g., congested queue). ATPG
complements but goes beyond earlier work in static checking
(which cannot detect liveness or performance faults) or fault
localization (which only localize faults given liveness results). We
describe our prototype ATPG implementation and results on two
real-world data sets: Stanford University’s backbone network and
Internet2. We find that a small number of test packets suffices to
test all rules in these networks: For example, 4000 packets can
cover all rules in Stanford backbone network, while 54 are enough
to cover all links. Sending 4000 test packets 10 times per second
consumes less than 1% of link capacity. ATPG code and the data
sets are publicly available.

Index Terms—Data plane analysis, network troubleshooting, test
packet generation.

I. INTRODUCTION

“Only strong trees stand the test of a storm.”

—Chinese idiom

I T IS notoriously hard to debug networks. Every day,
network engineers wrestle with router misconfigurations,

fiber cuts, faulty interfaces, mislabeled cables, software bugs,
intermittent links, and a myriad other reasons that cause net-
works to misbehave or fail completely. Network engineers
hunt down bugs using the most rudimentary tools (e.g., ,

, SNMP, and ) and track down root causes
using a combination of accrued wisdom and intuition. Debug-
ging networks is only becoming harder as networks are getting
bigger (modern data centers may contain 10 000 switches, a
campus network may serve 50 000 users, a 100-Gb/s long-haul
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Fig. 1. Static versus dynamic checking: A policy is compiled to forwarding
state, which is then executed by the forwarding plane. Static checking (e.g., [16])
confirms that . Dynamic checking (e.g., ATPG in this paper) confirms
that the topology is meeting liveness properties ( ) and that .

link may carry 100 000 flows) and are gettingmore complicated
(with over 6000 RFCs, router software is based on millions of
lines of source code, and network chips often contain billions
of gates). It is a mall wonder that network engineers have been
labeled “masters of complexity” [32]. Consider two examples.
Example 1: Suppose a router with a faulty line card starts

dropping packets silently. Alice, who administers 100 routers,
receives a ticket from several unhappy users complaining about
connectivity. First, Alice examines each router to see if the
configuration was changed recently and concludes that the
configuration was untouched. Next, Alice uses her knowledge
of the topology to triangulate the faulty device with and

. Finally, she calls a colleague to replace the line
card.
Example 2: Suppose that video traffic is mapped to a specific

queue in a router, but packets are dropped because the token
bucket rate is too low. It is not at all clear how Alice can track
down such a performance fault using and .
Troubleshooting a network is difficult for three reasons. First,

the forwarding state is distributed across multiple routers and
firewalls and is defined by their forwarding tables, filter rules,
and other configuration parameters. Second, the forwarding
state is hard to observe because it typically requires manu-
ally logging into every box in the network. Third, there are
many different programs, protocols, and humans updating the
forwarding state simultaneously. When Alice uses and

, she is using a crude lens to examine the current
forwarding state for clues to track down the failure.
Fig. 1 is a simplified view of network state. At the bottom of

the figure is the forwarding state used to forward each packet,
consisting of the L2 and L3 forwarding information base (FIB),
access control lists, etc. The forwarding state is written by
the control plane (that can be local or remote as in the SDN
model [32]) and should correctly implement the network ad-
ministrator’s policy. Examples of the policy include: “Security
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group X is isolated from security Group Y,” “Use OSPF for
routing,” and “Video traffic should receive at least 1 Mb/s.”
We can think of the controller compiling the policy (A) into

device-specific configuration files (B), which in turn determine
the forwarding behavior of each packet (C). To ensure the net-
work behaves as designed, all three steps should remain consis-
tent at all times, i.e., . In addition, the topology,
shown to the bottom right in the figure, should also satisfy a set
of liveness properties . Minimally, requires that sufficient
links and nodes are working; if the control plane specifies that a
laptop can access a server, the desired outcome can fail if links
fail. can also specify performance guarantees that detect flaky
links.
Recently, researchers have proposed tools to check that

, enforcing consistency between policy and the config-
uration [7], [16], [25], [31]. While these approaches can find
(or prevent) software logic errors in the control plane, they are
not designed to identify liveness failures caused by failed links
and routers, bugs caused by faulty router hardware or software,
or performance problems caused by network congestion. Such
failures require checking for and whether . Alice’s
first problem was with (link not working), and her second
problem was with (low level token bucket state not
reflecting policy for video bandwidth).
In fact, we learned from a survey of 61 network operators (see

Table I in Section II) that the two most common causes of net-
work failure are hardware failures and software bugs, and that
problems manifest themselves both as reachability failures and
throughput/latency degradation. Our goal is to automatically de-
tect these types of failures.
The main contribution of this paper is what we call an Auto-

matic Test Packet Generation (ATPG) framework that automat-
ically generates a minimal set of packets to test the liveness of
the underlying topology and the congruence between data plane
state and configuration specifications. The tool can also auto-
matically generate packets to test performance assertions such
as packet latency. In Example 1, instead of Alice manually de-
ciding which packets to send, the tool does so periodically
on her behalf. In Example 2, the tool determines that it must send
packets with certain headers to “exercise” the video queue, and
then determines that these packets are being dropped.
ATPG detects and diagnoses errors by independently and ex-

haustively testing all forwarding entries, firewall rules, and any
packet processing rules in the network. In ATPG, test packets
are generated algorithmically from the device configuration files
and FIBs, with the minimum number of packets required for
complete coverage. Test packets are fed into the network so
that every rule is exercised directly from the data plane. Since
ATPG treats links just like normal forwarding rules, its full cov-
erage guarantees testing of every link in the network. It can also
be specialized to generate a minimal set of packets that merely
test every link for network liveness. At least in this basic form,
we feel that ATPG or some similar technique is fundamental
to networks: Instead of reacting to failures, many network op-
erators such as Internet2 [14] proactively check the health of
their network using pings between all pairs of sources. How-
ever, all-pairs does not guarantee testing of all links and
has been found to be unscalable for large networks such as
PlanetLab [30].

Organizations can customize ATPG to meet their needs; for
example, they can choose to merely check for network liveness
(link cover) or check every rule (rule cover) to ensure security
policy. ATPG can be customized to check only for reachability
or for performance as well. ATPG can adapt to constraints such
as requiring test packets from only a few places in the network
or using special routers to generate test packets from every port.
ATPG can also be tuned to allocate more test packets to exer-
cise more critical rules. For example, a healthcare network may
dedicate more test packets to Firewall rules to ensure HIPPA
compliance.
We tested our method on two real-world data sets—the back-

bone networks of Stanford University, Stanford, CA, USA, and
Internet2, representing an enterprise network and a nationwide
ISP. The results are encouraging: Thanks to the structure of
real world rulesets, the number of test packets needed is sur-
prisingly small. For the Stanford network with over 757 000
rules and more than 100 VLANs, we only need 4000 packets
to exercise all forwarding rules and ACLs. On Internet2, 35 000
packets suffice to exercise all IPv4 forwarding rules. Put another
way, we can check every rule in every router on the Stanford
backbone 10 times every second by sending test packets that
consume less than 1% of network bandwidth. The link cover
for Stanford is even smaller, around 50 packets, which allows
proactive liveness testing every millisecond using 1% of net-
work bandwidth.
The contributions of this paper are as follows:
1) a survey of network operators revealing common failures
and root causes (Section II);

2) a test packet generation algorithm (Section IV-A);
3) a fault localization algorithm to isolate faulty devices and
rules (Section IV-B);

4) ATPG use cases for functional and performance testing
(Section V);

5) evaluation of a prototype ATPG system using rulesets
collected from the Stanford and Internet2 backbones
(Sections VI and VII).

II. CURRENT PRACTICE

To understand the problems network engineers encounter,
and how they currently troubleshoot them, we invited sub-
scribers to the NANOG1 mailing list to complete a survey in
May–June 2012. Of the 61 who responded, 12 administer small
networks ( k hosts), 23 medium networks (1 k–10 k hosts),
11 large networks (10 k–100 k hosts), and 12 very large
networks ( k hosts). All responses (anonymized) are
reported in [33] and are summarized in Table I. The most
relevant findings are as follows.
Symptoms: Of the six most common symptoms, four cannot

be detected by static checks of the type (throughput/
latency, intermittent connectivity, router CPU utilization, con-
gestion) and require ATPG-like dynamic testing. Even the re-
maining two failures (reachability failure and security Policy
Violation) may require dynamic testing to detect forwarding
plane failures.

1North American Network Operators’ Group
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TABLE I
RANKING OF SYMPTOMS AND CAUSES REPORTED BY ADMINISTRATORS
( MOST OFTEN; LEAST OFTEN). THE RIGHT COLUMN SHOWS THE
PERCENTAGE WHO REPORTED . (a) SYMPTOMS OF NETWORK FAILURE.

(b) CAUSES OF NETWORK FAILURE

Fig. 2. Reported number of (a) network-related tickets generated per month
and (b) time to resolve a ticket.

Causes: The two most common symptoms (switch and router
software bugs and hardware failure) are best found by dynamic
testing.
Cost of troubleshooting: Two metrics capture the cost of

network debugging—the number of network-related tickets
per month and the average time consumed to resolve a ticket
(Fig. 2). There are 35% of networks that generate more than
100 tickets per month. Of the respondents, 40.4% estimate it
takes under 30 min to resolve a ticket. However, 24.6% report
that it takes over an hour on average.
Tools: Table II shows that , , and SNMP are

by far the most popular tools. When asked what the ideal tool
for network debugging would be, 70.7% reported a desire for
automatic test generation to check performance and correctness.
Some added a desire for “long running tests to detect jitter or
intermittent issues,” “real-time link capacity monitoring,” and
“monitoring tools for network state.”
In summary, while our survey is small, it supports the hypoth-

esis that network administrators face complicated symptoms

TABLE II
TOOLS USED BY NETWORK ADMINISTRATORS ( MOST OFTEN;

LEAST OFTEN)

and causes. The cost of debugging is nontrivial due to the
frequency of problems and the time to solve these problems.
Classical tools such as and are still heavily
used, but administrators desire more sophisticated tools.

III. NETWORK MODEL

ATPG uses the header space framework—a geometric model
of how packets are processed we described in [16] (and used
in [31]). In header space, protocol-specific meanings associ-
ated with headers are ignored: A header is viewed as a flat se-
quence of ones and zeros. A header is a point (and a flow is
a region) in the space, where is an upper bound on
header length. By using the header space framework, we ob-
tain a unified, vendor-independent, and protocol-agnostic model
of the network2 that simplifies the packet generation process
significantly.

A. Definitions

Fig. 3 summarizes the definitions in our model.
Packets:A packet is defined by a tuple, where

the denotes a packet’s position in the network at any time
instant; each physical port in the network is assigned a unique
number.
Switches: A switch transfer function, , models a network

device, such as a switch or router. Each network device con-
tains a set of forwarding rules (e.g., the forwarding table) that
determine how packets are processed. An arriving packet is as-
sociated with exactly one rule by matching it against each rule in
descending order of priority, and is dropped if no rule matches.
Rules: A rule generates a list of one or more output packets,

corresponding to the output port(s) to which the packet is sent,
and defines how packet fields are modified. The rule abstraction
models all real-world rules we know including IP forwarding
(modifies port, checksum, and TTL, but not IP address); VLAN
tagging (adds VLAN IDs to the header); and ACLs (block
a header, or map to a queue). Essentially, a rule defines how
a region of header space at the ingress (the set of packets
matching the rule) is transformed into regions of header space
at the egress [16].
Rule History: At any point, each packet has a rule history:

an ordered list of rules the packet matched so far
as it traversed the network. Rule histories are fundamental to
ATPG, as they provide the basic rawmaterial from which ATPG
constructs tests.
Topology: The topology transfer function, , models the net-

work topology by specifying which pairs of ports are

2We have written vendor and protocol-specific parsers to translate configura-
tion files into header space representations.
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Fig. 3. Network model: (a) basic types and (b) the switch transfer function.

Fig. 4. Life of a packet: repeating and until the packet reaches its destina-
tion or is dropped.

connected by links. Links are rules that forward packets from
to without modification. If no topology rules match an

input port, the port is an edge port, and the packet has reached
its destination.

B. Life of a Packet

The life of a packet can be viewed as applying the switch
and topology transfer functions repeatedly (Fig. 4). When a
packet arrives at a network port , the switch function that
contains the input port is applied to , producing a list of
new packets . If the packet reaches its destination,
it is recorded. Otherwise, the topology function is used to in-
voke the switch function containing the new port. The process
repeats until packets reach their destinations (or are dropped).

IV. ATPG SYSTEM

Based on the network model, ATPG generates the minimal
number of test packets so that every forwarding rule in the net-
work is exercised and covered by at least one test packet. When
an error is detected, ATPG uses a fault localization algorithm to
determine the failing rules or links.
Fig. 5 is a block diagram of the ATPG system. The system first

collects all the forwarding state from the network (step 1). This
usually involves reading the FIBs, ACLs, and config files, as
well as obtaining the topology. ATPG uses Header Space Anal-
ysis [16] to compute reachability between all the test terminals
(step 2). The result is then used by the test packet selection al-
gorithm to compute a minimal set of test packets that can test

Fig. 5. ATPG system block diagram.

all rules (step 3). These packets will be sent periodically by the
test terminals (step 4). If an error is detected, the fault localiza-
tion algorithm is invoked to narrow down the cause of the error
(step 5). While steps 1 and 2 are described in [16], steps 3–5 are
new.

A. Test Packet Generation

1) Algorithm: We assume a set of test terminals in the net-
work can send and receive test packets. Our goal is to generate a
set of test packets to exercise every rule in every switch function,
so that any fault will be observed by at least one test packet. This
is analogous to software test suites that try to test every possible
branch in a program. The broader goal can be limited to testing
every link or every queue.
When generating test packets, ATPG must respect two key

constraints: 1) Port: ATPG must only use test terminals that are
available; 2)Header:ATPGmust only use headers that each test
terminal is permitted to send. For example, the network admin-
istrator may only allow using a specific set of VLANs. Formally,
we have the following problem.
Problem 1 (Test Packet Selection): For a network with the

switch functions, , and topology function, , de-
termine the minimum set of test packets to exercise all reach-
able rules, subject to the port and header constraints.
ATPG chooses test packets using an algorithm we call Test

Packet Selection (TPS). TPS first finds all equivalent classes
between each pair of available ports. An equivalent class is a
set of packets that exercises the same combination of rules. It
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Fig. 6. Example topology with three switches.

TABLE III
ALL-PAIRS REACHABILITY TABLE: ALL POSSIBLE HEADERS FROM EVERY
TERMINAL TO EVERY OTHER TERMINAL, ALONG WITH THE RULES

THEY EXERCISE

then samples each class to choose test packets, and finally com-
presses the resulting set of test packets to find the minimum cov-
ering set.

Step 1: Generate All-Pairs Reachability Table: ATPG
starts by computing the complete set of packet headers that can
be sent from each test terminal to every other test terminal.
For each such header, ATPG finds the complete set of rules it
exercises along the path. To do so, ATPG applies the all-pairs
reachability algorithm described in [16]: On every terminal
port, an all- header (a header that has all wildcarded bits) is
applied to the transfer function of the first switch connected
to each test terminal. Header constraints are applied here.
For example, if traffic can only be sent on VLAN , then
instead of starting with an all- header, the VLAN tag bits are
set to . As each packet traverses the network using the
network function, the set of rules that match are recorded in

. Doing this for all pairs of terminal ports generates
an all-pairs reachability table as shown in Table III. For each
row, the header column is a wildcard expression representing
the equivalent class of packets that can reach an egress terminal
from an ingress test terminal. All packets matching this class
of headers will encounter the set of switch rules shown in the
Rule History column.
Fig. 6 shows a simple example network, and Table IV is the

corresponding all-pairs reachability table. For example, an all-
test packet injected at will pass through switch . for-
wards packets with to and those with

to . then forwards ,
to , and switch forwards to

. These are reflected in the first two rows of Table IV.

Step 2: Sampling: Next, ATPG picks at least one test
packet in an equivalence class to exercise every (reachable)
rule. The simplest scheme is to randomly pick one packet per
class. This scheme only detects faults for which all packets
covered by the same rule experience the same fault (e.g., a link
failure). At the other extreme, if we wish to detect faults specific
to a header, then we need to select every header in every class.
We discuss these issues and our fault model in Section IV-B.

Step 3: Compression: Several of the test packets picked in
Step 2 exercise the same rule. ATPG therefore selects a min-
imum subset of the packets chosen in Step 2 such that the union
of their rule histories cover all rules. The cover can be chosen to
cover all links (for liveness only) or all router queues (for per-
formance only). This is the classical Min-Set-Cover problem.
While NP-Hard, a greedy algorithm provides a good
approximation, where is the number of test packets. We call
the resulting (approximately) minimum set of packets, the reg-
ular test packets. The remaining test packets not picked for the
minimum set are called the reserved test packets. In Table IV,

are regular test packets, and is a re-
served test packet. Reserved test packets are useful for fault lo-
calization (Section IV-B).
2) Properties: The TPS algorithm has the following useful

properties.
Property 1 (Coverage): The set of test packets exercise all

reachable rules and respect all port and header constraints.
Proof Sketch: Define a rule to be reachable if it can be ex-

ercised by at least one packet satisfying the header constraint,
and can be received by at least one test terminal. A reachable
rule must be in the all-pairs reachability table; thus, set cover
will pick at least one packet that exercises this rule. Some rules
are not reachable: For example, an IP prefix may be made un-
reachable by a set of more specific prefixes either deliberately
(to provide backup) or accidentally (due to misconfiguration).
Property 2 (Near-Optimality): The set of test packets se-

lected by TPS is optimal within logarithmic factors among all
tests giving complete coverage.

Proof Sketch: This follows from the logarithmic (in the
size of the set) approximation factor inherent in Greedy Set
Cover.
Property 3 (Polynomial Runtime): The complexity of finding

test packets is where is the number of test termi-
nals, is the network diameter, and is the average number
of rules in each switch.

Proof Sketch: The complexity of computing reachability
from one input port is [16], and this computation is
repeated for each test terminal.

B. Fault Localization

ATPG periodically sends a set of test packets. If test packets
fail, ATPG pinpoints the fault(s) that caused the problem.
1) Fault Model: A rule fails if its observed behavior differs

from its expected behavior. ATPG keeps track of where rules
fail using a result function . For a rule , the result function is
defined as

if fails at rule
if succeeds at rule .
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TABLE IV
TEST PACKETS FOR THE EXAMPLE NETWORK DEPICTED IN FIG. 6. IS STORED AS A RESERVED PACKET

“Success” and “failure” depend on the nature of the rule: A
forwarding rule fails if a test packet is not delivered to the in-
tended output port, whereas a drop rule behaves correctly when
packets are dropped. Similarly, a link failure is a failure of a for-
warding rule in the topology function. On the other hand, if an
output link is congested, failure is captured by the latency of a
test packet going above a threshold.
We divide faults into two categories: action faults and match

faults. An action fault occurs when every packet matching the
rule is processed incorrectly. Examples of action faults include
unexpected packet loss, a missing rule, congestion, and mis-
wiring. On the other hand, match faults are harder to detect be-
cause they only affect some packets matching the rule: for ex-
ample, when a rule matches a header it should not, or when a
rule misses a header it should match. Match faults can only be
detected by more exhaustive sampling such that at least one test
packet exercises each faulty region. For example, if a TCAM
bit is supposed to be , but is “stuck at 1,” then all packets with
a 0 in the corresponding position will not match correctly. De-
tecting this error requires at least two packets to exercise the
rule: one with a 1 in this position, and the other with a 0.
We will only consider action faults because they cover most

likely failure conditions and can be detected using only one test
packet per rule. We leave match faults for future work.
We can typically only observe a packet at the edge of the net-

work after it has been processed by every matching rule. There-
fore, we define an end-to-end version of the result function

if fails
if succeeds.

2) Algorithm: Our algorithm for pinpointing faulty rules as-
sumes that a test packet will succeed only if it succeeds at every
hop. For intuition, a succeeds only when all the forwarding
rules along the path behave correctly. Similarly, if a queue is
congested, any packets that travel through it will incur higher
latency and may fail an end-to-end test. Formally, we have the
following.
Assumption 1 (Fault Propagation): if and only if

,
ATPG pinpoints a faulty rule by first computing the minimal

set of potentially faulty rules. Formally, we have Problem 2.
Problem 2 (Fault Localization): Given a list of

tuples, find all that satisfies
, .

We solve this problem opportunistically and in steps.
Step 1: Consider the results from sending the regular test

packets. For every passing test, place all rules they exercise into
a set of passing rules, . Similarly, for every failing test, place

all rules they exercise into a set of potentially failing rules .
By our assumption, one or more of the rules in are in error.
Therefore, is a set of suspect rules.
Step 2: ATPG next trims the set of suspect rules by weeding

out correctly working rules. ATPG does this using the reserved
packets (the packets eliminated by Min-Set-Cover). ATPG se-
lects reserved packets whose rule histories contain exactly one
rule from the suspect set and sends these packets. Suppose a
reserved packet exercises only rule in the suspect set. If the
sending of fails, ATPG infers that rule is in error; if passes,
is removed from the suspect set. ATPG repeats this process for
each reserved packet chosen in Step 2.
Step 3: In most cases, the suspect set is small enough after

Step 2, that ATPG can terminate and report the suspect set.
If needed, ATPG can narrow down the suspect set further by
sending test packets that exercise two or more of the rules in the
suspect set using the same technique underlying Step 2. If these
test packets pass, ATPG infers that none of the exercised rules
are in error and removes these rules from the suspect set. If our
Fault Propagation assumption holds, the method will not miss
any faults, and therefore will have no false negatives.
False Positives: Note that the localization method may intro-

duce false positives, rules left in the suspect set at the end of
Step 3. Specifically, one or more rules in the suspect set may in
fact behave correctly.
False positives are unavoidable in some cases. When two

rules are in series and there is no path to exercise only one of
them, we say the rules are indistinguishable; any packet that ex-
ercises one rule will also exercise the other. Hence, if only one
rule fails, we cannot tell which one. For example, if an ACL rule
is followed immediately by a forwarding rule that matches the
same header, the two rules are indistinguishable. Observe that
if we have test terminals before and after each rule (impractical
in many cases), with sufficient test packets, we can distinguish
every rule. Thus, the deployment of test terminals not only af-
fects test coverage, but also localization accuracy.

V. USE CASES

We can use ATPG for both functional and performance
testing, as the following use cases demonstrate.

A. Functional Testing

We can test the functional correctness of a network by testing
that every reachable forwarding and drop rule in the network is
behaving correctly.
Forwarding Rule: A forwarding rule is behaving correctly if

a test packet exercises the rule and leaves on the correct port
with the correct header.
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Fig. 7. Generate packets to test drop rules: “flip” the rule to a broadcast rule in
the analysis.

Link Rule:A link rule is a special case of a forwarding rule. It
can be tested by making sure a test packet passes correctly over
the link without header modifications.
Drop Rule: Testing drop rules is harder because we must

verify the absence of received test packets. We need to know
which test packets might reach an egress test terminal if a drop
rule was to fail. To find these packets, in the all-pairs reacha-
bility analysis, we conceptually “flip” each drop rule to a broad-
cast rule in the transfer functions. We do not actually change
rules in the switches—we simply emulate the drop rule failure
in order to identify all the ways a packet could reach the egress
test terminals.
As an example, consider Fig. 7. To test the drop rule in ,

we inject the all- test packet at Terminal 1. If the drop rule was
instead a broadcast rule, it would forward the packet to all of its
output ports, and the test packets would reach Terminals 2 and
3. Now, we sample the resulting equivalent classes as usual: We
pick one sample test packet from and one from .
Note that we have to test both and because the drop
rule may have failed at , resulting in an unexpected packet to
be received at either test terminal 2 or test terminal 3

. Finally, we send and expect the two test packets not to
appear since their arrival would indicate a failure of ’s drop
rule.

B. Performance Testing

We can also use ATPG to monitor the performance of links,
queues, and QoS classes in the network, and even monitor
SLAs.
Congestion: If a queue is congested, packets will experience

longer queuing delays. This can be considered as a (perfor-
mance) fault. ATPG lets us generate one way congestion tests
to measure the latency between every pair of test terminals;
once the latency passed a threshold, fault localization will pin-
point the congested queue, as with regular faults. With appro-
priate headers, we can test links or queues as in Alice’s second
problem.
Available Bandwidth: Similarly, we can measure the avail-

able bandwidth of a link, or for a particular service class. ATPG
will generate the test packet headers needed to test every link,
or every queue, or every service class; a stream of packets with

these headers can then be used to measure bandwidth. One can
use destructive tests, like , or more gentle ap-
proaches like packet pairs and packet trains [19]. Suppose a
manager specifies that the available bandwidth of a particular
service class should not fall below a certain threshold; if it does
happen, ATPG’s fault localization algorithm can be used to tri-
angulate and pinpoint the problematic switch/queue.
Strict Priorities: Likewise, ATPG can be used to determine

if two queues, or service classes, are in different strict priority
classes. If they are, then packets sent using the lower-priority
class should never affect the available bandwidth or latency of
packets in the higher-priority class. We can verify the relative
priority by generating packet headers to congest the lower class
and verifying that the latency and available bandwidth of the
higher class is unaffected. If it is, fault localization can be used
to pinpoint the problem.

VI. IMPLEMENTATION

We implemented a prototype system to automatically parse
router configurations and generate a set of test packets for the
network. The code is publicly available [1].

A. Test Packet Generator

The test packet generator, written in Python, contains a Cisco
IOS configuration parser and a Juniper Junos parser. The data-
plane information, including router configurations, FIBs, MAC
learning tables, and network topologies, is collected and parsed
through the command line interface (Cisco IOS) or XML files
(Junos). The generator then uses the Hassel [13] header space
analysis library to construct switch and topology functions.
All-pairs reachability is computed using the

parallel-processing module shipped with Python. Each process
considers a subset of the test ports and finds all the reachable
ports from each one. After reachability tests are complete, re-
sults are collected, and the master process executes the Min-
Set-Cover algorithm. Test packets and the set of tested rules are
stored in a SQLite database.

B. Network Monitor

The network monitor assumes there are special test agents in
the network that are able to send/receive test packets. The net-
work monitor reads the database and constructs test packets and
instructs each agent to send the appropriate packets. Currently,
test agents separate test packets by IP Proto field and TCP/UDP
port number, but other fields, such as IP option, can also be
used. If some of the tests fail, the monitor selects additional
test packets from reserved packets to pinpoint the problem. The
process repeats until the fault has been identified. The mon-
itor uses JSON to communicate with the test agents, and uses
SQLite’s string matching to lookup test packets efficiently.

C. Alternate Implementations

Our prototype was designed to be minimally invasive, re-
quiring no changes to the network except to add terminals at
the edge. In networks requiring faster diagnosis, the following
extensions are possible.
Cooperative Routers: A new feature could be added to

switches/routers, so that a central ATPG system can instruct a
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TABLE V
TEST PACKET GENERATION RESULTS FOR STANFORD BACKBONE (TOP) AND INTERNET2 (BOTTOM), AGAINST THE NUMBER OF PORTS SELECTED FOR DEPLOYING

TEST TERMINALS. “TIME TO SEND” PACKETS IS CALCULATED ON A PER-PORT BASIS, ASSUMING 100 B PER TEST PACKET, 1 Gb/s LINK FOR STANFORD,
AND 10 Gb/s FOR INTERNET2

router to send/receive test packets. In fact, for manufacturing
testing purposes, it is likely that almost every commercial
switch/router can already do this; we just need an open inter-
face to control them.
SDN-Based Testing: In a software defined network (SDN)

such as OpenFlow [27], the controller could directly instruct the
switch to send test packets and to detect and forward received
test packets to the control plane. For performance testing, test
packets need to be time-stamped at the routers.

VII. EVALUATION

A. Data Sets: Stanford and Internet2

We evaluated our prototype system on two sets of network
configurations: the Stanford University backbone and the In-
ternet2 backbone, representing a mid-size enterprise network
and a nationwide backbone network, respectively.3

Stanford Backbone: With a population of over 15 000
students, 2000 faculty, and five/16 IPv4 subnets, Stanford
represents a large enterprise network. There are 14 operational
zone (OZ) Cisco routers connected via 10 Ethernet switches
to two backbone Cisco routers that in turn connect Stanford to
the outside world. Overall, the network has more than 757 000
forwarding entries and 1500 ACL rules. Data plane configura-
tions are collected through command line interfaces. Stanford
has made the entire configuration rule set public [1].
Internet2: Internet2 is a nationwide backbone network with

nine Juniper T1600 routers and 100-Gb/s interfaces, supporting
over 66 000 institutions in US. There are about 100 000 IPv4
forwarding rules. All Internet2 configurations and FIBs of the
core routers are publicly available [14], with the exception of
ACL rules, which are removed for security concerns. Although
IPv6 and MPLS entries are also available, we only use IPv4
rules in this paper.

B. Test Packet Generation

We ran ATPG on a quad-core Intel Core i7 CPU 3.2 GHz and
6 GB memory using eight threads. For a given number of test

3Each figure/table in Section VII (electronic version) is clickable, linking to
instructions on reproducing results.

terminals, we generated the minimum set of test packets needed
to test all the reachable rules in the Stanford and Internet2 back-
bones. Table V shows the number of test packets needed. For
example, the first column tells us that if we attach test termi-
nals to 10% of the ports, then all of the reachable Stanford rules
(22.2% of the total) can be tested by sending 725 test packets.
If every edge port can act as a test terminal, 100% of the Stan-
ford rules can be tested by sending just 3,871 test packets. The
“Time” row indicates how long it took ATPG to run; the worst
case took about an hour, the bulk of which was devoted to cal-
culating all-pairs reachability.
To put these results into perspective, each test for the Stan-

ford backbone requires sending about 907 packets per port in the
worst case. If these packets were sent over a single 1-Gb/s link,
the entire network could be tested in less than 1 ms, assuming
each test packet is 100 B and not considering the propagation
delay. Put another way, testing the entire set of forwarding rules
10 times every second would use less than 1% of the link band-
width.
Similarly, all the forwarding rules in Internet2 can be tested

using 4557 test packets per port in the worst case. Even if the test
packets were sent over 10-Gb/s links, all the forwarding rules
could be tested in less than 0.5 ms, or 10 times every second
using less than 1% of the link bandwidth.
We also found that 100% link coverage (instead of rule cov-

erage) only needed 54 packets for Stanford and 20 for Internet2.
The table also shows the large benefit gained by compressing the
number of test packets—in most cases, the total number of test
packets is reduced by a factor of 20–100 using the minimum
set cover algorithm. This compression may make proactive link
testing (that was considered infeasible earlier [30]) feasible for
large networks.
Coverage is the ratio of the number of rules exercised to the

total number of reachable rules. Our results shows that the cov-
erage grows linearly with the number of test terminals available.
While it is theoretically possible to optimize the placement of
test terminals to achieve higher coverage, we find that the ben-
efit is marginal for real data sets.
Rule Structure: The reason we need so few test packets is be-

cause of the structure of the rules and the routing policy. Most
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TABLE VI
TEST PACKETS USED IN THE FUNCTIONAL TESTING EXAMPLE. IN THE RULE HISTORY COLUMN, IS THE IP FORWARDING RULE, IS A LINK RULE, AND IS
THE BROADCAST RULE OF SWITCHES. IS THE IP FORWARDING RULE MATCHING ON 172.20.10.32/27, AND MATCHES ON 171.67.222.64/27. IN THE

LINK RULE FROM NODE TO NODE . THE TABLE HIGHLIGHTS THE COMMON RULES BETWEEN THE PASSED TEST PACKETS AND THE FAILED ONE. IT IS
OBVIOUS FROM THE RESULTS THAT RULE IS IN ERROR

Fig. 8. Cumulative distribution function of rule repetition, ignoring different
action fields.

rules are part of an end-to-end route, and so multiple routers
contain the same rule. Similarly, multiple devices contain the
same ACL or QoS configuration because they are part of a net-
work-wide policy. Therefore, the number of distinct regions of
header space grow linearly, not exponentially, with the diameter
of the network.
We can verify this structure by clustering rules in Stanford

and Internet2 that match the same header patterns. Fig. 8 shows
the distribution of rule repetition in Stanford and Internet2. In
both networks, 60%–70% of matching patterns appear in more
than one router. We also find that this repetition is correlated
to the network topology. In the Stanford backbone, which has a
two-level hierarchy, matching patterns commonly appear in two
(50.3%) or four (17.3%) routers, which represents the length of
edge-to-Internet and edge-to-edge routes. In Internet2, 75.1% of
all distinct rules are replicated nine times, which is the number
of routers in the topology.

C. Testing in an Emulated Network

To evaluate the network monitor and test agents, we
replicated the Stanford backbone network in Mininet [20],
a container-based network emulator. We used Open
vSwitch (OVS) [29] to emulate the routers, using the real
port configuration information, and connected them according
to the real topology.We then translated the forwarding entries in
the Stanford backbone network into equivalent OpenFlow [27]
rules and installed them in the OVS switches with Beacon [4].
We used emulated hosts to send and receive test packets gen-
erated by ATPG. Fig. 9 shows the part of network that is used
for experiments in this section. We now present different test
scenarios and the corresponding results.
Forwarding Error: To emulate a functional error, we deliber-

ately created a fault by replacing the action of an IP forwarding
rule in that matched with a
drop action (we called this rule ). As a result of this fault,
test packets from to with
failed and were not received at . Table VI shows two other

Fig. 9. Portion of the Stanford backbone network showing the test packets used
for functional and performance testing examples in Section VII-C.

test packets we used to localize and pinpoint the fault. These test
packets shown in Fig. 9 in and are
received correctly at the end terminals. From the rule history of
the passing and failing packets in Table III, we deduce that only
rule could possibly have caused the problem, as all the
other rules appear in the rule history of a received test packet.
Congestion:We detect congestion by measuring the one-way

latency of test packets. In our emulation environment, all ter-
minals are synchronized to the host’s clock so the latency
can be calculated with a single time-stamp and one-way
communication.4

To create congestion, we rate-limited all the links in the em-
ulated Stanford network to 30 Mb/s and created two 20-Mb/s
UDP flows: to at and to at s,
which will congest the link starting at s.
The bottom left graph next to in Fig. 9 shows the two
UDP flows. The queue inside the routers will build up, and test
packets will experience longer queuing delay. The bottom right
graph next to shows the latency experienced by two test
packets, one from to and the other one from to

. At s, the test packet experiences much
higher latency, correctly signaling congestion. Since these two
test packets share the and links, ATPG con-
cludes that the congestion is not happening in these two links;

4To measure latency in a real network, two-way communication is usually
necessary. However, relative change of latency is sufficient to uncover conges-
tion.
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Fig. 10. Priority testing: Latency measured by test agents when (a) low- or (b)
high-priority slice is congested. (c) Available bandwidth measurements when
the bottleneck is in low/high-priority slices.

hence, ATPG correctly infers that is the congested
link.
Available Bandwidth: ATPG can also be used to mon-

itor available bandwidth. For this experiment, we used
Pathload [15], a bandwidth probing tool based on packet
pairs/packet trains. We repeated the previous experiment, but
decreased the two UDP flows to 10 Mb/s, so that the bottle-
neck available bandwidth was 10 Mb/s. Pathload reports that

has an available bandwidth5 of 11.715 Mb/s,
has an available bandwidth of 19.935 Mb/s, while

the other (idle) terminals report 30.60 Mb/s. Using the same
argument as before, ATPG can conclude that
link is the bottleneck link with around 10 Mb/s of available
bandwidth.
Priority: We created priority queues in OVS using Linux’s
scheduler and utilities. We replicated the previously

“failed” test case for high- and low-priority queues,
respectively.6 Fig. 10 shows the result.
We first repeated the congestion experiment. When the low-

priority queue is congested (i.e., both UDP flows mapped to
low-priority queues), only low-priority test packets are affected.
However, when the high-priority slice is congested, low- and
high-priority test packets experience the congestion and are de-
layed. Similarly, when repeating the available bandwidth exper-
iment, high-priority flows receive the same available bandwidth
whether we use high- or low-priority test packets. However, for
low-priority flows, the high-priority test packets correctly re-
ceive the full link bandwidth.

D. Testing in a Production Network

We deployed an experimental ATPG system in three build-
ings in Stanford University that host the Computer Science and
Electrical Engineering departments. The production network
consists of over 30 Ethernet switches and a Cisco router con-
necting to the campus backbone. For test terminals, we utilized

5All numbers are the average of 10 repeated measurements.
6The Stanford data set does not include the priority settings.

Fig. 11. October 2, 2012 production network outages captured by the ATPG
system as seen from the lens of (top) an inefficient cover (all-pairs) and
(bottom) an efficient minimum cover. Two outages occurred at 4 PM and
6:30 PM, respectively.

the 53 WiFi access points (running Linux) that were already
installed throughout the buildings. This allowed us to achieve
high coverage on switches and links. However, we could only
run ATPG on essentially a Layer-2 (bridged) Network.
On October 1–10, 2012, the ATPG system was used for a

10-day experiment. Since the network configurations re-
mained static during this period, instead of reading the config-
uration from the switches dynamically, we derived the network
model based on the topology. In other words, for a Layer-2
bridged network, it is easy to infer the forwarding entry in each
switch for each MAC address without getting access to the for-
warding tables in all 30 switches.We only used to generate
test packets. Pings suffice because in the subnetwork we tested
there are no Layer-3 rules or ACLs. Each test agent downloads a
list of targets from a central Web server every 10 min and
conducts tests every 10 s. Test results were logged locally
as files and collected daily for analysis.
During the experiment, a major network outage occurred on

October 2. Fig. 11 shows the number of failed test cases during
that period. While both all-pairs and ATPG’s selected test
suite correctly captured the outage, ATPG uses significantly less
test packets. In fact, ATPG uses only 28 test packets per round
compared to 2756 packets in all-pairs , a 100 reduction.
It is easy to see that the reduction is from quadratic overhead
(for all-pairs testing between 53 terminals) to linear overhead
(for a set cover of the 30 links between switches). We note that
while the set cover in this experiment is so simple that it could
be computed by hand, other networks will have Layer-3 rules
and more complex topologies requiring the ATPG minimum set
cover algorithm.
The network managers confirmed that the later outage was

caused by a loop that was accidentally created during switch
testing. This caused several links to fail, and hence more than
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300 pings failed per minute. The managers were unable to deter-
mine why the first failure occurred. Despite this lack of under-
standing of the root cause, we emphasize that the ATPG system
correctly detected the outage in both cases and pinpointed the
affected links and switches.

VIII. DISCUSSION

A. Overhead and Performance

The principal sources of overhead for ATPG are polling the
network periodically for forwarding state and performing all-
pairs reachability. While one can reduce overhead by running
the offline ATPG calculation less frequently, this runs the risk
of using out-of-date forwarding information. Instead, we re-
duce overhead in two ways. First, we have recently sped up the
all-pairs reachability calculation using a fast multithreaded/mul-
timachine header space library. Second, instead of extracting the
complete network state every time ATPG is triggered, an incre-
mental state updater can significantly reduce both the retrieval
time and the time to calculate reachability. We are working on
a real-time version of ATPG that incorporates both techniques.
Test agents within terminals incur negligible overhead be-

cause they merely demultiplex test packets addressed to their
IP address at a modest rate (e.g., 1 per millisecond) compared
to the link speeds Gb/s most modern CPUs are capable of
receiving.

B. Limitations

As with all testing methodologies, ATPG has limitations.
1) Dynamic boxes:ATPG cannot model boxes whose internal
state can be changed by test packets. For example, an NAT
that dynamically assigns TCP ports to outgoing packets
can confuse the online monitor as the same test packet can
give different results.

2) Nondeterministic boxes: Boxes can load-balance packets
based on a hash function of packet fields, usually combined
with a random seed; this is common in multipath routing
such as ECMP. When the hash algorithm and parameters
are unknown, ATPG cannot properly model such rules.
However, if there are known packet patterns that can iterate
through all possible outputs, ATPG can generate packets to
traverse every output.

3) Invisible rules:A failed rule can make a backup rule active,
and as a result, no changes may be observed by the test
packets. This can happen when, despite a failure, a test
packet is routed to the expected destination by other rules.
In addition, an error in a backup rule cannot be detected in
normal operation. Another example is when two drop rules
appear in a row: The failure of one rule is undetectable
since the effect will be masked by the other rule.

4) Transient network states: ATPG cannot uncover errors
whose lifetime is shorter than the time between each round
of tests. For example, congestion may disappear before an
available bandwidth probing test concludes. Finer-grained
test agents are needed to capture abnormalities of short
duration.

5) Sampling: ATPG uses sampling when generating test
packets. As a result, ATPG can miss match faults since the

error is not uniform across all matching headers. In the
worst case (when only one header is in error), exhaustive
testing is needed.

IX. RELATED WORK

We are unaware of earlier techniques that automatically
generate test packets from configurations. The closest related
works we know of are offline tools that check invariants in net-
works. In the control plane, NICE [7] attempts to exhaustively
cover the code paths symbolically in controller applications
with the help of simplified switch/host models. In the data
plane, Anteater [25] models invariants as boolean satisfiability
problems and checks them against configurations with a SAT
solver. Header Space Analysis [16] uses a geometric model to
check reachability, detect loops, and verify slicing. Recently,
SOFT [18] was proposed to verify consistency between dif-
ferent OpenFlow agent implementations that are responsible
for bridging control and data planes in the SDN context. ATPG
complements these checkers by directly testing the data plane
and covering a significant set of dynamic or performance errors
that cannot otherwise be captured.
End-to-end probes have long been used in network fault diag-

nosis in work such as [8]–[10], [17], [23], [24], [26]. Recently,
mining low-quality, unstructured data, such as router configura-
tions and network tickets, has attracted interest [12], [21], [34].
By contrast, the primary contribution of ATPG is not fault lo-
calization, but determining a compact set of end-to-end mea-
surements that can cover every rule or every link. The mapping
between Min-Set-Cover and network monitoring has been pre-
viously explored in [3] and [5]. ATPG improves the detection
granuality to the rule level by employing router configuration
and data plane information. Furthermore, ATPG is not limited
to liveness testing, but can be applied to checking higher level
properties such as performance.
There are many proposals to develop a measurement-friendly

architecture for networks [11], [22], [28], [35]. Our approach is
complementary to these proposals: By incorporating input and
port constraints, ATPG can generate test packets and injection
points using existing deployment of measurement devices.
Our work is closely related to work in programming lan-

guages and symbolic debugging. We made a preliminary at-
tempt to use KLEE [6] and found it to be 10 times slower than
even the unoptimized header space framework. We speculate
that this is fundamentally because in our framework we directly
simulate the forward path of a packet instead of solving con-
straints using an SMT solver. However, more work is required
to understand the differences and potential opportunities.

X. CONCLUSION

Testing liveness of a network is a fundamental problem for
ISPs and large data center operators. Sending probes between
every pair of edge ports is neither exhaustive nor scalable [30]. It
suffices to find a minimal set of end-to-end packets that traverse
each link. However, doing this requires a way of abstracting
across device specific configuration files (e.g., header space),
generating headers and the links they reach (e.g., all-pairs reach-
ability), and finally determining a minimum set of test packets
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(Min-Set-Cover). Even the fundamental problem of automat-
ically generating test packets for efficient liveness testing re-
quires techniques akin to ATPG.
ATPG, however, goes much further than liveness testing with

the same framework. ATPG can test for reachability policy (by
testing all rules including drop rules) and performance health
(by associating performance measures such as latency and loss
with test packets). Our implementation also augments testing
with a simple fault localization scheme also constructed using
the header space framework. As in software testing, the formal
model helps maximize test coverage while minimizing test
packets. Our results show that all forwarding rules in Stanford
backbone or Internet2 can be exercised by a surprisingly small
number of test packets ( for Stanford, and for
Internet2).
Network managers today use primitive tools such as

and . Our survey results indicate that they are eager
for more sophisticated tools. Other fields of engineering indi-
cate that these desires are not unreasonable: For example, both
the ASIC and software design industries are buttressed by bil-
lion-dollar tool businesses that supply techniques for both static
(e.g., design rule) and dynamic (e.g., timing) verification. In
fact, many months after we built and named our system, we dis-
covered to our surprise that ATPGwas awell-known acronym in
hardware chip testing, where it stands for Automatic Test Pat-
tern Generation [2]. We hope network ATPG will be equally
useful for automated dynamic testing of production networks.
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