
Fast Reroute and Multipath Routing Extensions to the
NetFPGA Reference Router

Hongyi Zeng, Mario Flajslik, Nikhil Handigol
Department of Electrical Engineering and Department of Computer Science

Stanford University
Stanford, CA, USA

{hyzeng, mariof, nikhilh}@stanford.edu

ABSTRACT
This paper describes the design and implementation of two
feature extensions to the NetFPGA reference router - fast
reroute and multipath routing. We also share our insight
into the inherent similarities of these two seemingly dis-
parate features that enable us to run them simultaneously.
Both features are designed to work at line-rate. With min-
imum modification of both hardware and software, the ad-
vanced features are tested and will be demonstrated on the
NetFPGA card.

1. INTRODUCTION
One of the many systems built using NetFPGA is an IPv4

reference router [1]. The router runs the Pee-Wee OSPF [2]
routing protocol, and does address lookup and packet for-
warding at line-rate.

In this paper, we present two feature extensions to the
NetFPGA reference router:

• Fast reroute - Detection of link failure or topology
change in the reference router is generally based on
the OSPF messages timing out. However, this causes
packets to be dropped in the interval between the ac-
tual failure and failure detection. These intervals are
as large as 90 seconds in PW-OSPF. Fast reroute [3]
is a technique that detects link failures at the hard-
ware level and routes packets over alternative routes
to minimize packet drops. These alternative routes
are pre-computed by the router software.

• Multipath routing - Multipath routing [4] is a routing
strategy where next-hop packet forwarding to a single
destination can occur over multiple “best paths”. This
enables load-balancing and better utilization of avail-
able network capacity. Our implementation of mul-
tipath routing is similar to ECMP; packets are for-
warded over only those paths that tie for top place
in routing metric calculations. This has the two-fold
advantage of keeping the routing protocol simple and
robust as well as minimizing packet reordering.

This work was originally intended as an advanced feature
project for CS344“Building an Internet Router” class, in the
year 2009 at Stanford University.

2. DESIGN
The main goal of CS344 class is to design an output port

lookup module for the NetFPGA. This module takes incom-
ing packets, parses header information, queries the routing

table and ARP cache, labels the packet with output port in-
formation, and finally puts it in output queues. Along with
other modules in NetFPGA gateware, a functional Internet
router can be built.

2.1 Architecture
The overall architecture of output port lookup module is

shown in Figure 1.

Figure 1: Block Diagram of Output Port Lookup

The scheduler provides “position” information to other
modules. This simplifies the design of header parser and
TTL/Checksum. The header parser parses the header of
packets, and TTL/Checksum module manipulates TTL/Check-
sum information of IP packets.

There are three table lookup modules for ARP table, IP
filter table, and routing table. The first two have similar
lookup mechanism, while routing table lookup should be
Longest Prefix Matching (LPM). In general, these modules
accept a search key and a REQ signal, feed back an ACK
signal with the results. On the other side, these modules
connect to the Block RAM (BRAM) interface provided by
Xilinx. Table entries are stored in BRAM.

The main state machine reads in the entire header to a
FIFO. At the same time header parser and ttl checksum pre-
pares the necessary information to the state machine. If the
packet is a regular IP packet, the state machine issues a IP
filter search request. If the address is found in the IP filter
table, the packet will be kicked up to software. Otherwise,



the state machine does a routing table search, and a ARP
search. In the last stage, the state machine modifies the
MAC header, TTL, and checksum, and sends the packet to
the destination port.

The extension code to support fast reroute and multipath
routing is mainly in the routing table and lpm lookup mod-
ule. We will describe the two new features in the following
subsections. Before that, the routing table structure and
LPM lookup process will be presented.

2.2 Routing Table and LPM Lookup

2.2.1 Routing Table
Each entry of the routing table consists four parts: IP ad-

dress as search key, the mask, next-hop IP, and port. The
port information is stored as a one-hot-encoded number.
This number has a one for every port the packet should go
out on where bit 0 is MAC0, bit 1 is CPU0, bit 2 is MAC1,
etc. The structure of the entry is depicted in Table 1.

Search IP Mask Next-hop IP Port
192.168.100.0 255.255.255.0 192.168.101.2 0000 0001

Table 1: Entry Structure of the Routing Table

2.2.2 LPM Lookup
Due to the course requirement, we did not use the Xilinx

Ternary Content Addressable Memory (TCAM) cores[5, 6].
Instead, we implement the routing table with BRAM on the
NetFPGA card. Linear search is employed in LPM lookup
as the size of the routing table is relatively small (32 entries
required by the class). The entries with longer prefix are
stored in front of those with shorter prefix. By doing this,
entries with longest prefix will naturally come out first in a
linear search.

2.3 Fast Reroute
In order to realize fast reroute feature, the router soft-

ware needs to store a backup path for those ”fast reroute
protected” entry. In our router, the backup path informa-
tion is in the form of duplicate entries only with different
port information. In the normal case, the lpm lookup mod-
ule will return the first matched entry to the main state
machine, making the port in this entry having the highest
priority. When the port in the primary entry fails, the sec-
ond entry with backup port information will be used and
the flow will be rerouted. Table 2 is an example.

Search IP Mask Next-hop IP Port
1 192.168.100.0 255.255.255.0 192.168.101.2 0000 0001
2 192.168.100.0 255.255.255.0 192.168.101.2 0000 0100

Table 2: Fast Reroute entries. The primary port is
MAC0. The backup port is MAC1

The reroute procedure is very fast because it is purely
based on hardware. We make use of in-band link status
information from Broadcom PHY chips as feedback. Once
a link is down, lpm lookup module will notice this imme-
diately. The next coming packet will not follow the entry
with invalid output port. Further details on in-band sta-
tus information of NetFPGA’s PHY chip can be found in
Broadcom’s BCM5464SR data sheet[7].

Besides link status feedback, the router hardware needs
no modification under a linear search scheme. However, the
duplicate entries will take up extra space in the routing ta-
ble. At the same time, it is not applicable to TCAM based
lookup mechanism, in which entries are not stored in order.
Our solution is to extend port information section in the
entry from 8bit to 16bit. The first 8bit is the primary port
while the following 8bit is the backup. The primary port
will be used first unless the associated link is down.

2.4 Multipath Routing
In the NetFPGA reference router, a routing table entry

with multiple 1’s in port section indicates itself as a multi-
cast entry. Packets match this entry are sent to those ports
at the same time. Based on the fact that in the current
OSPF routing protocol, a packet is never sent to more than
one port, we decided to take advantage of this section to
implement multipath routing.

The goal of multipath routing is to allow packets destined
to the same end-host making use of more than one route.
In our multipath routing implementation, each entry in the
routing table may have more than one output port, with
multiple 1’s in port section. Packets matching this entry
could go to any port indicated in the entry. Note that for
multipath entry, each output port will have its correspon-
dent next-hop IP (gateway). We created another gateway
table to store the gateway address. In routing table, we store
a 8bit pointer (index) for each output port that can be used.
Currently we use a simple round-robin fashion to choose the
actual output port. A register keeps track of which port
was last used and instructs lpm lookup module to find the
next available port. A multipath entry and gateway table
example is shown in Table 3.

Search IP Mask Next-hop IP index Port
192.168.100.0 255.255.255.0 02 00 00 01 0100 0001

Index Next-hop IP
1 192.168.101.2
2 192.168.102.3

Table 3: Multipath entry. Packets use MAC0,
MAC3 in turns.

We do not specify the priority of ports in the same en-
try. Each port, if available, will be used with equal prob-
ability. However, priority can still be realized by ordered
duplicate entries described in the last section. One may op-
timize bandwidth, delay, quality of service, etc. by choosing
the output port cleverly.

It is worth to point out that, unlike fast reroute, the mul-
tipath routing implementation is independent of how entries
are stored. The same code applies to TCAM based router.

2.5 Limitation
We understand that there are a number of limitation in

the design.
First, for fast reroute feature, the only feedback informa-

tion is the link status. However, when the neighbor router
goes down or freezes, sometimes the link status may remain
active. In this case, it will not trigger the fast rerouting
mechanism, and the application is subject to interruption.
By design, our implementation is a hardware based improve-
ment to the current OSPF protocol. With the software, the



topology is still recalculated regularly to overcome the router
failures not resulting an inactive link state.

Another limitation of the design is packet reordering. We
split a single flow into multiple paths without packet re-
ordering protection. Packets could arrive at the destination
in different order as they are sent. As the hardware router
providing an interface to handle multipath routing, the soft-
ware (multipath routing protocol, transport layer protocol
such as TCP, or applications) may develop some methods
to ensure the quality of service.

3. IMPLEMENTATION

3.1 Hardware
Fast reroute and multipath routing features have already

been implemented in the hardware with linear search based
implementation. The corresponding Verilog code is less than
100 lines.

In general, the two advanced features consume little logics
in FPGA. However, duplicate entries for fast reroute may
need more BRAMs to store. Table 4 describes the device
utilization of out project. It uses 31% of the available flip-
flops on the Xilinx Virtex II Pro 50 FPGA, which is almost
equal to the reference router. 50% of the BRAMs available
are used. The main use of BRAMs occurs in the three tables.

XC2VP50 Utilization
Resources Utilization Percentage

Occupied Slices 14,781 out of 23,616 62%
4-input LUTS 17,469 out of 47,232 36%

Flip Flops 14,918 out of 47,232 31%
Block RAMs 118 out of 232 50%

External IOBs 356 out of 692 51%

Table 4: Device utilization for Fast Reroute and
Multipath Routing enabled Router

3.2 Software
Software is responsible for providing correct tables to the

hardware. Fast reroute and multipath routing features re-
quire changes only to the routing table. In the basic router
implementation the Routing Table is generated using Di-
jkstra’s algorithm to find shortest path to all known des-
tinations. This calculation is done whenever the topology
changes, as perceived by the router in question. To support
fast reroute and multipath routing, it is not sufficient to find
shortest paths to all destinations, but also second shortest
(and possibly third shortest and more) paths are also neces-
sary. This is calculated by running Dijkstra’s algorithm four
times (because NetFPGA has four interfaces). For each run
of the algorithm, all interfaces on the router are disabled,
except for one (a different interface is enabled in each run).
Resulting hop count distances (i.e. the distance vectors) for
each of the algorithm runs are then compared to provide the
routing table.

3.2.1 Fast Reroute
When fast reroute feature is enabled, two entries for each

destination will be added to the routing table if the desti-
nation can be reached over at least two interfaces. The first
entry corresponds to the shortest path route and is preferred,
and the second entry is the backup path if the primary path

is disabled. The router will be in the mode where it uses a
backup path only for the short time that it will take OSPF to
update all routers. After that, the backup path will become
the primary path, and a new backup path will be calculated
(if available). Because of this, adding a second backup path,
while possible, is deemed unnecessary. Also, this mechanism
allows fast reroute to be enabled for some chosen routes, and
disabled for others, which can potentially save space in the
routing table.

3.2.2 Multipath Routing
Equal cost multipath has been chosen for its simplicity

in implementation and limited packet reordering. To im-
plement this we search if each of the destinations can be
reached over multiple interfaces (as calculated by different
algorithm runs) in the same minimum hop count. If this is
so, all such interfaces are added to the routing table entry, if
not, only the shortest path interface is added to the routing
table.

In order to measure performance and demonstrate how
fast reroute and multipath routing work, a demo applica-
tion is being developed. This application consists of a GUI
and a backend. The backend communicates with all routers
and collects statistical information, such as packet count for
each interface of each router. It is also aware of the network
topology, which it then feeds to the GUI for visual presen-
tation, together with the statistical data. Results will be
available soon, as the demo application is completed.

4. CONCLUSION
In this paper we described the design and implementa-

tion of the fast reroute and multipath routing extensions
to the NetFPGA reference router. Implemented with very
little modification to the hardware pipeline, these features
enhance the robustness and efficiency of the network. In
addition, the GUI frontend can be used to visualize and val-
idate the performance of the system.

This work is based on a beta version of the NetFPGA gate-
ware, which lacks TCAM cores and SCONE (Software Com-
ponent Of NetFPGA). In the future, we will port the code
to NetFPGA beta-plus version, in order to achieve higher
performance and reliability.

5. REFERENCES
[1] NetFPGA Group, “NetFPGA reference router,”

http://netfpga.org/wordpress/netfpga-ipv4-reference-
router/.

[2] Stanford University CS344 Class, “Pee-Wee OSPF
Protocol Details,”
http://yuba.stanford.edu/cs344/pwospf/.

[3] P. Pan, G. Swallow, and A. Atlas, “Fast Reroute
Extensions to RSVP-TE for LSP Tunnels,” RFC 4090
(Proposed Standard), Internet Engineering Task Force,
May 2005. [Online]. Available:
http://www.ietf.org/rfc/rfc4090.txt

[4] D. Thaler and C. Hopps, “Multipath Issues in Unicast
and Multicast Next-Hop Selection,” RFC 2991
(Informational), Internet Engineering Task Force, Nov.
2000. [Online]. Available:
http://www.ietf.org/rfc/rfc2991.txt

[5] Xilinx, Inc, “An overview of multiple CAM designs in



Virtex family devices,” http://www.xilinx.com/sup-
port/documentation/application notes/xapp201.pdf.

[6] ——, “Designing flexible, fast CAMs with Virtex family
FPGAs,” http://www.xilinx.com/support/documen-
tation/application notes/xapp203.pdf.

[7] Broadcom Corporation, “BCM5464SR Quad-Port
10/100/1000BASE-T Gb Transceiver with
Copper/Fiber Media Interface,”
http://www.broadcom.com/products/Enterprise-
Networking/Gigabit-Ethernet-
Transceivers/BCM5464SR.


