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ABSTRACT
This paper presents an architecture for adding functional-
ity to networks via outsourcing. In this model, the enter-
prise network only forwards data; any additional process-
ing is performed by external Feature Providers (FPs). FPs
provide and manage features, scaling and moving them in
response to customer demand, and providing automated re-
covery in case of failure. Benefits to the enterprise include re-
duced cost and management complexity, improved features
through FP specialization, and increased choice in services.
Central to the model are a policy component and a Fea-

ture API (FAPI). Policy is specified with features not lo-
cations, enabling features to be located anywhere. FAPI
enables communication between enterprise and FP control
planes to share policy and configure features.
We have built a prototype implementation of this archi-

tecture called Jingling. Our prototype system incorporates
a nation-wide backbone network and FPs located in six sites
around the United States.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Distributed Networks, Network
Communications

Keywords
Jingling, outsourcing, network services, middleboxes, SDN

1. INTRODUCTION
Network administrators expect much more from their net-

works than data transport alone. Today’s networks are a
blend of “plumbing” to transport packets along paths, and
“services” to provide additional in-network features, such as
web caching, protection from malicious traffic, network ad-
dress translation, and load balancing.
Network switches and routers excel at data transport.

Focusing on transport alone simplifies hardware, keeping
down cost, power and complexity. A number of commer-
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cial switching chips are available with a capacity of almost
a terabit per second [3, 13], and are used for wiring closets,
top-of-rack switches in data centers, and in access and WAN
routers. There seems little doubt that cheap and abundant
switching capacity (particularly in wireline networks) is here
to stay.

1.1 Adding network functionality
While it is clear where to place basic switching, it is much

less clear where to place richer functionality. Three ap-
proaches are commonly used to add functionality to net-
works, with varying degrees of success:

Embed in end-hosts : Support for encryption, personal
firewalls, tunneling, and anti-spam filters are some-
times provided by the OS or applications. This works
well for personalized and standalone services, but is
hard to support and keep up-to-date, particularly in
large enterprises.

Deploy middleboxes : These act as “bumps-in-the-wire”
that process all packets passing through them. Each
new feature is typically provided by a new dedicated
box. Middleboxes have the benefit of being added only
where needed (rather than paying for them in every
switch along the path). But we have to decide where
to place them: typically, they need to be added at a
choke point in the path of all packets [20].

Add to switches and routers : Network equipment
vendors frequently add new features to switches and
routers. It is common for switches and routers to
support thousands of embedded features and protocols
(there are over 6,000 RFCs to consider), and to be
based on tens of millions of lines of source code.
Adding advanced features directly to switches reduces
the total number of boxes. Making a subset of boxes
feature-rich makes network planning harder: we have
to know where to place the feature-rich boxes when
laying out the network. Making all boxes feature-rich
adds to the overall cost, power consumption, and
fragility of the network.

Software Defined Networks (SDN) provide programmatic
control over traffic flow. The middlebox placement problem
can be eliminated with SDN: traffic of interest can be ex-
plicitly steered through a middlebox placed anywhere in the
network. Policy is specified and stored in a logically central-
ized control plane and enforced when pushed down to the



programmable dataplane devices. This redirection capabil-
ity was explored in early SDN systems [5, 10] and demon-
strated in commercial systems [19] targeting data centers
and enterprise networks (commonly termed “service inser-
tion”).

1.2 Outsourcing
Common amongst these solutions is their location: they

are all situated within the network. We pose the question:
Can in-network features be “outsourced”? That is, can we
add functionality to a network by placing the function out-
side the network? For example, how can an enterprise direct
all incoming HTTP traffic through an external HTTP virus
scanning service? Alternatively, could a network detect ma-
licious traffic using an external intrusion detection system
(IDS) service, or spread load across web servers using an
external load balancing service?
There are many benefits to outsourcing functionality to

a remote Feature Provider (FP). First, it allows an enter-
prise network to be much simpler and focuses resources on
building good “plumbing”, without having to worry about
the purchase, placement and support of middleboxes and
feature-laden switches. Second, it allows an external FP
to specialize in providing good service to many customers.
Third, it encourages improvement of service through com-
petition between FPs.
Enterprises already outsource infrastructure such as web

hosting, e-mail, and databases for the same reasons. Out-
sourcing network services could remove 10s to 1000s of de-
vices from typical networks [17], reducing capital and oper-
ational expenditure.
On the face of it, this may sound like a marketing plan to

save Internet service providers from obsolescence by giving
them a means to take control of our enterprise networks.
Our goal is in fact quite different: we wish to allow anyone
to provide a service, without regard to location. We wish to
allow features to be placed anywhere, and to be called up
from anywhere else. New functionality might be placed in a
traditional service provider, or provided by a dedicated third
party company. A global enterprise might place complex
services at its headquarters, or inside a public cloud (e.g.
Amazon EC2 [1]). An enterprise should be able to deploy a
network service, without having to worry about where it is
placed.
We are not the first to propose that network services be

inserted arbitrarily. Service Insertion Architecture [16] de-
scribes a way for services to be inserted along the path. In
principle, policy-based routing can be used to route traffic to
anywhere in the network [6]. And several researchers have
recommended waypoint services where traffic is brought to
the service boxes [5, 10,15].
All of these proposals have the advantage of crisply dis-

tinguishing a clean, simple data transport network (“dumb
and minimal”, as the Internet pioneers envisaged), from the
more complex, dedicated devices providing added function-
ality. But existing methods assume that the “plumbing”and
the“services”are under the control of the same organization.
The network administrator is assumed to know precisely
where all middleboxes are placed, and where traffic should
be routed, and they must carefully manage the routing ta-
bles so that traffic is carried to the right box. Whenever
the topology changes—and it frequently does because a link
or switch fails, new VLANs are added, or new switches are

added—then switches and routers must be manually recon-
figured to re-route traffic. This approach is time-consuming,
and fraught with risks.

Instead, we believe the network administrator should be
able to express a policy such as: All of my incoming SMTP
traffic should first pass through Company A’s spam filter ser-
vice, regardless of the state of the data transport network,
and regardless of the location of the spam filter. The enter-
prise network administrator should be able to choose another
service provider by merely replacing their name in the pol-
icy. Mapping of policy onto the underlying network should
be performed by an intelligent control plane.

1.3 Outsourcing requirements
To successfully outsource network functionality, we need

the following to hold true:

Policy should be expressed via service names, not
locations. Network administrators may not have con-
trol over where a particular service resides outside their
network. Policy absent of location information does
not need updating when a service is moved, for exam-
ple to bring it closer to the user. It also allows the
service to scale, by allowing the service provider to
choose from among multiple copies of a service.

Service should be established via a well-defined
open API. The network administrator must be
able to clearly identify the service being requested,
and (optionally) the service provider. The network
administrator must also be able to clearly identify
the set of traffic requiring special processing. This
in turn must be used to automatically configure the
network. If redirection is local (i.e. if the traffic is to
be redirected only once it reaches the administrator’s
network), the rules are applied locally. If redirection
is to be applied remotely—for example, by an Internet
service provider—then the local administrator needs
a way to characterize and communicate how traffic is
to be redirected on his/her behalf.

Functionality should be abstracted as a service. Net-
work operators should focus on what functions they
want and not how those functions are implemented.
A service details a contract to process data in a given
manner—multiple implementations that adhere to the
same contract provide the same service.

As an example, we can use these three properties to imple-
ment the virus scanning example cited earlier. The service
is invoked using the policy statement: “All HTTP traffic →

virus scan”, without reference to the location, or the mech-
anism used to perform the scanning. The network adminis-
trator and the virus scanning provider use an open API to
negotiate the use and configuration of the service.

We built a prototype system that we call Jingling1. Jin-
gling allows arbitrary functionality to be interposed in a
packet flow, regardless of location; Jingling is designed so
that remote service providers can offer arbitrary network
services to enterprises.

Our Jingling prototype includes:

• A policy language and Feature API for service negoti-
ation.

1Jingling (精灵) means sprite in Chinese.



• An enterprise network controller to map policies into
network settings.

• A resource manager that allocates and manages re-
sources.

The resulting system requires no end-host changes and is
based on a simple, minimal forwarding plane. Services may
be located anywhere, implemented in hardware or software,
and may be fixed-function or programmable. Although the
system was designed to enable outsourcing of functionality,
the same system can be used to support deployment of ser-
vices within the enterprise.
Our system is inspired by several branches of existing

work. Mechanisms for separating network policy from the
network infrastructure and using centralized control are
found in many SDN proposals [4, 5, 8, 14]. Approaches
to use indirection to solve middlebox problems are found
in [9–11,18,20] and commercial products [7, 16].
An alternate outsourcing system [17] was proposed si-

multaneously to this work. Distinguishing features of our
proposal include independent control plane elements in the
enterprise and service provider, the Feature API for nego-
tiation of policy and configuration of services, support for
deployment of services within the network as well as out-
side, and the ability to use SDN to configure the network.

2. JINGLING ARCHITECTURE

2.1 Overview
At its core, Jingling is an architecture for adding function-

ality or features to a network. Jingling takes the unorthodox
approach of placing features outside the traditional network
boundary.
A high-level overview of the Jingling model is shown in

Figure 1. The model involves three stakeholders: the enter-
prise, the Internet Service Provider (ISP), and the Feature
Provider (FP). The enterprise requires one or more features
which the FP provides. The enterprise and FP are unlikely
to be located adjacent one another and thus must communi-
cate via an ISP. One ISP and one FP are shown for simplicity
but multiple of each may be involved.
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Figure 1: Overview of the Jingling architecture. An
enterprise utilizes one or more features provided by
a Feature Provider (FP). The enterprise and FP
communicate via a Feature API (FAPI) to config-
ure features and specify which feature(s) to apply
to different traffic.

The enterprise network administrator specifies policy that
determines the features to apply to particular traffic. The
policy is installed into the enterprise control plane or Enter-
prise Network Controller (ENC), shown in Figure 2. The
ENC has two key elements. A translation element maps pol-
icy into network configuration, utilizing information about
the configured features and current topology. A topology
monitoring element updates network configuration when the
topology changes due to link or switch addition, removal, or
failure. The ENC also maintains databases of topology, fea-
ture, and policy information.
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Figure 2: Enterprise Network Controller (ENC):
translates policy and monitors topology within the
enterprise.

The Resource Manager (RM) is the FP counterpart to
the ENC, and is shown in Figure 3. The RM configures
the FP’s resources to create processing pipelines that imple-
ment features. The RM’s structure is similar to the ENC.
Policy from the ENC is stored in the RM’s policy database
and translated into network configuration. Currently con-
figured feature information is store in a feature database.
A management element manages the creation, deletion, and
movement of feature instances. Network configuration must
be updated whenever feature instances or the network state
change.
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Figure 3: Resource Manager (RM): man-
ages/monitors services and translates policy within
the Feature Provider.

Communication between the ENC and RM is performed
via a Feature API (FAPI). FAPI is used to communicate
policy information and to configure each feature.

Required in this model is the ability to route traffic to
and from each feature. Several feasible choices (e.g. Policy-
Based Routing, Tunneling, OpenFlow [14]) of routing mech-
anism exist. Regardless of the mechanism that is used, an in-
telligent control plane translates the high-level feature-based
policy into the low-level mechanism to route traffic appro-
priately.



2.2 Policy
Policy determines the features to apply to traffic. Pol-

icy must be specified in terms of which features to use but
not where those features are located. Support for scaling
and mobility within Jingling rely on the absence of location
information; specifying only the feature allows the control
plane to map and remap traffic to elements providing a fea-
ture as it deems necessary.
Policy consists of a set of policy rules conforming to the

following basic structure:

traffic pattern → features

where traffic pattern specifies the subset of traffic that the
rule applies to, and features is an ordered list of features to
apply to that traffic. For example, a policy rule that directs
all HTTP traffic within an IP subnet through a caching
service and a firewall service is expressed as:
[ip_dst=192.168.0.0/24, tp_dst=80 → caching,

firewall].

2.3 Feature API (FAPI)
The Feature API allows the enterprise to communicate

with the FP to 1) specify policy to apply to traffic, and 2)
configure features. FAPI also allows communication with
Jingling-aware ISPs.
FAPI provides a uniform interface through which enti-

ties communicate. Implementation details of each entity are
hidden behind this interface, allowing an enterprise to com-
municate with any FP. Table 1 presents the core FAPI calls.

Name Description
installPolicy(p) Install policy rules p
removePolicy(p) Remove policy rules p
writeState(f , k, v) Write state (k, v) into feature f

readState(f , k) Read state k from feature f

Table 1: Feature API for control communication be-
tween enterprise and FP.

Policy specification is performed via installPolicy(p) and
removePolicy(p). These two calls are invoked on the FP
control plane by the enterprise control plane in response to
policy changes by the network administrator. Some features
may allow configuration by the enterprise to modify the fea-
ture behavior. The set of configurable parameters is feature
specific; an HTTP content filtering feature may allow the
selection of the content type to filter, while an HTTP cache
may not allow any configuration at all. Feature configura-
tion is performed via writeState(f , k, v) and readState(f ,
k). These calls present configuration as a set of key-value
pairs (k, v) that are read and written for each feature.

2.4 Resource Management Interface (RMI)
The Resource Management Interface allows an RM to

manage resources under its control. RMI presents a uni-
form interface across resources to the control plane. Table 2
shows the core RMI calls.
RMI uses the concepts feature, resource, and instance. A

feature details a contract to process data in a given man-
ner; a resource is a physical entity capable of providing one
or more features; an instance is an implementation of a
feature on a resource. Resources can be commodity PCs,
programmable hardware, or fixed-function middleboxes; the

middlebox permanently provides one fixed instance of a fea-
ture.

Resources must implement appropriate logic to process
each RMI call. A createInstance call to a software node
should start a new software process; the same call to a pro-
grammable hardware node should download the appropriate
bitstream.

2.5 Traffic redirection
A mechanism is required to redirect traffic through FPs.

Traffic originating within the enterprise is redirected by ap-
propriate routing rules within the enterprise network. The
FP may rewrite source addresses to ensure that return data
is delivered directly to the FP. Traffic originating outside
the enterprise is redirected at the enterprise edge (simple,
but adds routing delay) or within the internet. Advertising
addresses allocated by the FP instead of those of the enter-
prise2 effectively redirects traffic as it enters the internet.

Traffic must transit one or more ISPs between the enter-
prise and FP. Such traffic can be transported via encapsu-
lation or by establishing paths through the ISP using FAPI
(Jingling-aware ISPs only).

3. IMPLEMENTATION AND RESULTS
To evaluate the merits of outsourcing network functional-

ity, we built the nationwide testbed shown in Figure 4. The
“enterprise” is a small set of servers located at Stanford Uni-
versity. Three FPs were created across the US. Two of the
FPs are single-site, one each at Stanford and Utah (Emu-
lab). The third FP models a multi-site provider, with loca-
tions in Los Angeles, Houston, New York, and Washington
D.C.; the servers are physically located in Internet2 PoPs.
Two features were deployed: a web cache and an intrusion
prevention system.
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Figure 4: The Jingling Prototype

3.1 Implementation
Our enterprise consists of several unmodified PCs within

our local network at Stanford. Each FP is composed of a
small number of x86-based servers, most of which contain
a NetFPGA. Features are implemented via software (either
virtual machines or processes on non-virtualized hosts) or
firmware on the NetFPGAs. These components are stitched

2Enterprises who have moved their IT infrastructure, such
as web and mail servers, to the cloud already advertise IP
addresses owned by their service providers.



Name Description
Control Plane → Resource

createInstance(f) Create a new instance of feature f

destroyInstance(i) Destroy feature instance i

moveInstance(i, l) Move instance i to location l

writeState(i, k, v) Write state (k, v) to instance i

readState(i, k) Read state k from instance i

Resource → Control Plane
instanceJoin(i) Instance i is available
instanceLeave(i) Instance i is leaving
instanceMoved(i, lold , lnew ) Instance i has moved from lold to lnew
instanceEvent(i, e) Event e occurred at i

Table 2: Resource Management Interface for FP resource control

together to form a complete pipeline. OpenFlow networks
within each FP interconnect servers, and all are Internet
connected.
The prototype ENC and RM are implemented as exten-

sions to Beacon [2], a Java-based, multi-threaded, modular
OpenFlow controller. The Jingling bundle contains approxi-
mately 2,500 lines of Java. A small RMI client daemon, writ-
ten in Python, runs on each server. The client can start and
stop processes/VMs, and read the state of features. FAPI
and RMI method calls were encoded using JSON.
Traffic between the enterprise and FPs is forwarded over

GRE tunnels. Outbound connections from the enterprise
are rewritten by the FP to enable return traffic to be routed
directly to the FP. Inbound connections from the internet
must be rerouted to the FP by the enterprise.

3.2 Results

3.2.1 Baseline Functionality
A simple test verified Jingling’s baseline functionality of

mapping policy onto the underling network. The test uti-
lized the enterprise network, the Emulab FP, and the In-
ternet2 FP. Two features were used: a web cache hosted in
Internet2, and an Intrusion Prevention System (IPS) hosted
in Emulab.
The test operated as follows. A client within the enter-

prise repeatedly requested a fixed page from a distant pub-
lic HTTP server, while the policy was modified according
to Table 3. Initially no policy was installed, allowing direct
access to the HTTP server. The web cache was inserted, re-
ducing access time for the page. An IPS that blocks HTTP
traffic was inserted after the cache, but the client is served
the page from the cache. Finally, the IPS and cache or-
der were reversed to force traffic through the IPS before the
cache, thereby preventing the client retrieving the page.

Step FAPI Calls Latency
0 — High
1 installPolicy(tp_dst=http→[cache]) Low
2 installPolicy(tp_dst=http→[cache,IPS]) Low

writeState(IPS, rules, ‘http deny’)
3 installPolicy(tp_dst=http→[IPS,cache]) ∞

writeState(IPS, rules, ‘http deny’) (Blocked)

Table 3: Policy changes to demonstrate baseline
functionality

3.2.2 Resource Management Tasks
We implemented three advanced resource management

tasks that use the RMI.
Scaling: Scaling was tested by generating load on a

caching service within the Stanford FP. Instances were cre-
ated/destroyed by the RM in response to traffic load, with
each instance hosted as a process on a separate machine.
Figure 5 shows the number of instances closely tracking ag-
gregate load.
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Figure 5: Automatic feature scaling in response to
load. The standard deviation (σ) across instances
reflects fairness. The trigger rate at which new
instances are created can be read off the instance
count line using the left-hand axis.

Fast Failure Recovery: In this test, the RM detected
and recovered from failures. It monitored the health of
each resource via the RMI interface with periodic heart-
beats. Failure recovery was performed by switching to a
hot-standby or creating a copy of instances hosted on the
failed resource. In a setup similar to the scaling experiment,
the RM switched to a hot-standby instance in 190ms.

Live Migration: An FP may migrate a service closer to
users to reduce response times. In this test, a client gener-
ated HTTP requests to a fixed URL, and the requests were
redirected through a caching service within Internet2. The
cache started in New York, but the RM detected the client’s
location and moved the cache to Los Angeles to be closer
to the client. Response time was reduced by approximately
140ms. The underlying VM migration mechanism resulted
in approximately 300ms of downtime during migration.



4. CONCLUSION AND FUTURE WORK
The Jingling architecture enables network functionality to

be outsourced to external Feature Providers (FPs). Policy
is expressed via service names, not locations, and an intelli-
gent control plane maps policy onto the underlying network.
A Feature API (FAPI) enables communication of policy be-
tween the enterprise and FP. A prototype was built that
demonstrates the core Jingling functionality.
There are several areas that we believe deserve more focus

before a production deployment is built:
Performance: Jingling incurs latency penalties due to

increased path lengths (as with other indirection-based sys-
tems [10, 18]). The penalty should be small if the fea-
ture provider is located near the original traffic path, and
may even be negative [12]. Content delivery networks pro-
vide a model for deployment; they have a large number of
geographically-distributed sites to minimize distance from
users. Measurement should be performed to estimate the
impact of different deployment scenarios.
Traffic redirection: Several redirection mechanisms are

proposed in § 2.5. We implemented one set of mechanisms
for use in our Jingling prototype; the cost and benefit of
each mechanism should be quantified to enable selection of
the best mechanism.
Security and trust: There are two primary concerns for

an enterprise using an FP: is the FP providing the agreed
service, and is the FP (and only the FP) using the data
appropriately? Verifying that a service is provided could
be achieved by monitoring and probing the FP, either by
the enterprise or a third-party. Ensuring appropriate use of
data is a harder problem. Eavesdropping by third-parties
can be prevented using existing mechanisms (eg. encrypted
tunnels); trust of an FP could be based upon reputation or
a mechanism such as external auditing. Users of cloud com-
pute services face similar concerns but this has not prevented
their widespread use.
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